|
1. Yamasaki, A., An Overview of CO2 Mitigation Options for Global Warming—Emphasizing CO2 Sequestration Options. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2003, 36 (4), 361-375. 2. Maginn, E. J., What to Do with CO2. The Journal of Physical Chemistry Letters 2010, 1 (24), 3478-3479. 3. Mikkelsen, M.; Jorgensen, M.; Krebs, F. C., The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science 2010, 3 (1), 43-81. 4. Bushuyev, O.; Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Lagemaat, J.; Kelley, S.; Sargent, E., What Should We Make with CO 2 and How Can We Make It? Joule 2018. 5. Aydin, G.; Karakurt, I.; Aydiner, K., Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy 2010, 38 (9), 5072-5080. 6. Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014, 39, 426-443. 7. Gattrell, M.; Gupta, N.; Co, A., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry 2006, 594 (1), 1-19. 8. Lu, Q.; Jiao, F., Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439-456. 9. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686. 10. Ye, S.; Wang, R.; Wu, M.-Z.; Yuan, Y.-P., A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Applied Surface Science 2015, 358, 15-27. 11. Izumi, Y., Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews 2013, 257 (1), 171-186. 12. Tahir, M.; Amin, N. S., Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management 2013, 76 (0), 194-214. 13. Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews 2019, 48 (21), 5310-5349. 14. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A., Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010, 4 (3), 1259-1278. 15. Zhou, H.; Qu, Y.; Zeid, T.; Duan, X., Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science 2012, 5 (5), 6732-6743. 16. Tu, W.; Zhou, Y.; Zou, Z., Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials 2014, n/a-n/a. 17. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95 (1), 69-96. 18. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638. 19. Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J., High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Applied Materials and Interfaces 2013, 5 (4), 1348-1354. 20. Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Li, X.; Zhou, L., Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental 2013, 130-131, 277-284. 21. Nunez, J.; De La Pena O'Shea, V. A.; Jana, P.; Coronado, J. M.; Serrano, D. P., Effect of copper on the performance of ZnO and ZnO1-xN x oxides as CO2 photoreduction catalysts. Catalysis Today 2013, 209, 21-27. 22. Zhang, Y.; Tang, Y.; Liu, X.; Dong, Z.; Hng, H. H.; Chen, Z.; Sum, T. C.; Chen, X., Three-dimensional CdS-titanate composite nanomaterials for enhanced visible-light-driven hydrogen evolution. Small 2013, 9 (7), 996-1002. 23. Coridan, R. H.; Shaner, M.; Wiggenhorn, C.; Brunschwig, B. S.; Lewis, N. S., Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. Journal of Physical Chemistry C 2013, 117 (14), 6949-6957. 24. Praus, P.; Kozák, O.; Kočí, K.; Panáček, A.; Dvorský, R., CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide. Journal of Colloid and Interface Science 2011, 360 (2), 574-579. 25. Finkelstein-Shapiro, D.; Petrosko, S. H.; Dimitrijevic, N. M.; Gosztola, D.; Gray, K. A.; Rajh, T.; Tarakeshwar, P.; Mujica, V., CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles. Journal of Physical Chemistry Letters 2013, 4 (3), 475-479. 26. Michalkiewicz, B.; Majewska, J.; Kadzioka, G.; Bubacz, K.; Mozia, S.; Morawski, A. W., Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization 2014, 5, 47-52. 27. Sing Tan, S.; Zou, L.; Hu, E., Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials 2007, 8 (1–2), 89-92. 28. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122. 29. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H., Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science 2012, 5 (11), 9217-9233. 30. Billo, T.; Fu, F.-Y.; Raghunath, P.; Shown, I.; Chen, W.-F.; Lien, H.-T.; Shen, T.-H.; Lee, J.-F.; Chan, T.-S.; Huang, K.-Y.; Wu, C.-I.; Lin, M. C.; Hwang, J.-S.; Lee, C.-H.; Chen, L.-C.; Chen, K.-H., Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. 2018, 14 (2), 1702928. 31. Fu, F.-Y.; Shown, I.; Li, C.-S.; Raghunath, P.; Lin, T.-Y.; Billo, T.; Wu, H.-L.; Wu, C.-I.; Chung, P.-W.; Lin, M.-C.; Chen, L.-C.; Chen, K.-H., KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction. ACS Applied Materials & Interfaces 2019, 11 (28), 25186-25194. 32. Kang, S.; Han, S.; Kang, Y., Unveiling Electrochemical Reaction Pathways of CO2 Reduction to CN Species at S-Vacancies of MoS2. 2019, 12 (12), 2671-2678. 33. Shown, I.; Samireddi, S.; Chang, Y.-C.; Putikam, R.; Chang, P.-H.; Sabbah, A.; Fu, F.-Y.; Chen, W.-F.; Wu, C.-I.; Yu, T.-Y.; Chung, P.-W.; Lin, M. C.; Chen, L.-C.; Chen, K.-H., Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature Communications 2018, 9 (1), 169. 34. Wang, L.; Wang, Y.; Cheng, Y.; Liu, Z.; Guo, Q.; Ha, M. N.; Zhao, Z., Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. Journal of Materials Chemistry A 2016, 4 (14), 5314-5322. 35. Bae, K.-L.; Kim, J.; Lim, C. K.; Nam, K. M.; Song, H., Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nature Communications 2017, 8 (1), 1156. 36. He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M., High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental 2015, 168-169, 1-8. 37. He, Y.; Zhang, L.; Teng, B.; Fan, M., New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environmental Science & Technology 2015, 49 (1), 649-656. 38. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S., On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications 2012, 25, 78-82. 39. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C., Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry 2011, 21 (35), 13452. 40. Chai, B.; Peng, T.; Zeng, P.; Mao, J., Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. Journal of Materials Chemistry 2011, 21 (38), 14587. 41. Lakadamyali, F.; Reisner, E., Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chemical Communications 2011, 47 (6), 1695. 42. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A., High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 2009, 9 (2), 731-737. 43. Singh, V.; Beltran, I. J. C.; Ribot, J. C.; Nagpal, P., Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis. Nano Letters 2014, 14 (2), 597-603. 44. Adachi, K.; Ohta, K.; Mizuno, T., Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy 1994, 53 (2), 187-190. 45. Subrahmanyam, M.; Kaneco, S.; Alonso-Vante, N., A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental 1999, 23 (2–3), 169-174. 46. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2 (7), 745-758. 47. Wu, J. C. S.; Lin, H.-M., Photo reduction of CO2 to methanol via TiO2 photocatalyst. International Journal of Photoenergy 2005, 7 (3). 48. Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C., Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. The Journal of Physical Chemistry Letters 2009, 1 (1), 48-53. 49. Ulagappan, N.; Frei, H., Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. The Journal of Physical Chemistry A 2000, 104 (33), 7834-7839. 50. Yang, C.-C.; Vernimmen, J.; Meynen, V.; Cool, P.; Mul, G., Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. Journal of Catalysis 2011, 284 (1), 1-8. 51. Yang, C.-C.; Yu, Y.-H.; van der Linden, B.; Wu, J. C. S.; Mul, G., Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? Journal of the American Chemical Society 2010, 132 (24), 8398-8406. 52. Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T., Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. The Journal of Physical Chemistry C 2010, 114 (19), 8892-8898. 53. Park, H.-a.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K., Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. Journal of Materials Chemistry 2012, 22 (12), 5304-5307. 54. Halmann, M.; Ulman, M.; Aurian-Blajeni, B., Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy 1983, 31 (4), 429-431. 55. Nguyen, T.-V.; Wu, J. C. S.; Chiou, C.-H., Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Communications 2008, 9 (10), 2073-2076. 56. Kuwabata, S.; Uchida, H.; Ogawa, A.; Hirao, S.; Yoneyama, H., Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. Journal of the Chemical Society, Chemical Communications 1995, (8), 829-830. 57. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry 1998, 115 (3), 223-226. 58. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3–4), 494-502. 59. Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2010, 96 (3–4), 239-244. 60. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828. 61. Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y.-P., Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chemical Communications 2004, (10), 1234-1235. 62. Vijayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K., Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. The Journal of Physical Chemistry C 2010, 114 (30), 12994-13002. 63. Liu, Q.; Zhou, Y.; Tu, W.; Yan, S.; Zou, Z., Solution-Chemical Route to Generalized Synthesis of Metal Germanate Nanowires with Room-Temperature, Light-Driven Hydrogenation Activity of CO2 into Renewable Hydrocarbon Fuels. Inorganic Chemistry 2013, 53 (1), 359-364. 64. Li, X.; Zhuang, Z.; Li, W.; Pan, H., Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General 2012, 429–430 (0), 31-38. 65. Zhang, N.; Ouyang, S.; Li, P.; Zhang, Y.; Xi, G.; Kako, T.; Ye, J., Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications 2011, 47 (7), 2041-2043. 66. Freund, H. J.; Roberts, M. W., Surface chemistry of carbon dioxide. Surface Science Reports 1996, 25 (8), 225-273. 67. Lowry, T. M., Valence and the structure of atoms and molecules. By Prof. G. N. Lewis. Pp. 172. American Chemical Monograph Series. New York: The Chemical Catalog Co., Inc., 1923. Price $3. Journal of the Society of Chemical Industry 1924, 43 (1), 17-17. 68. Liu, L.; Fan, W.; Zhao, X.; Sun, H.; Li, P.; Sun, L., Surface Dependence of CO2 Adsorption on Zn2GeO4. Langmuir 2012, 28 (28), 10415-10424. 69. Chang, X.; Wang, T.; Gong, J., CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science 2016, 9 (7), 2177-2196. 70. Liou, P.-Y.; Chen, S.-C.; Wu, J. C. S.; Liu, D.; Mackintosh, S.; Maroto-Valer, M.; Linforth, R., Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy & Environmental Science 2011, 4 (4), 1487-1494. 71. Wang, T.; Yang, L.; Du, X.; Yang, Y., Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor. Energy Conversion and Management 2013, 65, 299-307. 72. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565. 73. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009, 19 (12), 1987-1992. 74. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat Nano 2009, 4 (4), 217-224. 75. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2010, 2 (12), 1015-1024. 76. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010, 39 (1), 228-240. 77. Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I. S.; Chen, C.-W.; Chhowalla, M., Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials 2010, 22 (4), 505-509. 78. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M., Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C 2009, 113 (35), 15768-15771. 79. Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H., Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials 2010, 20 (14), 2255-2262. 80. Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M., Modification of the surface chemistry of activated carbons. Carbon 1999, 37 (9), 1379-1389. 81. Ogino, I.; Suzuki, Y.; Mukai, S. R., Tuning the Pore Structure and Surface Properties of Carbon-Based Acid Catalysts for Liquid-Phase Reactions. ACS Catalysis 2015, 5 (8), 4951-4958. 82. Liu, Y.; Wilcox, J., Molecular Simulation Studies of CO2 Adsorption by Carbon Model Compounds for Carbon Capture and Sequestration Applications. Environmental Science & Technology 2013, 47 (1), 95-101. 83. Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I., Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 2008, 20 (1), 14-27. 84. Liu, Y.; Wilcox, J., Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons. Environmental Science & Technology 2012, 46 (3), 1940-1947. 85. Chen, J.; Zhang, Y.; Zhang, M.; Yao, B.; Li, Y.; Huang, L.; Li, C.; Shi, G., Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science 2016, 7 (3), 1874-1881. 86. Vacchi, I. A.; Raya, J.; Bianco, A.; Ménard-Moyon, C., Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Materials 2018, 5 (3), 035037. 87. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J., Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. The Journal of Physical Chemistry C 2011, 115 (34), 17009-17019. 88. Kumar, P. V.; Bernardi, M.; Grossman, J. C., The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano 2013, 7 (2), 1638-1645. 89. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon 2004, 42 (14), 2929-2937. 90. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4 (4), 2059-2069. 91. Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S., Ultraviolet-visible spectroscopy of graphene oxides. 2012, 2 (3), 032146. 92. Eda, G.; Chhowalla, M., Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. 2010, 22 (22), 2392-2415. 93. Zhao, G.; Huang, X.; Wang, X.; Wang, X., Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review. Journal of Materials Chemistry A 2017, 5 (41), 21625-21649. 94. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials 2009, 19 (16), 2577-2583. 95. Mokkapati, V. R. S. S.; Pandit, S.; Kim, J.; Martensson, A.; Lovmar, M.; Westerlund, F.; Mijakovic, I., Bacterial response to graphene oxide and reduced graphene oxide integrated in agar plates. Royal Society Open Science 5 (11), 181083.
|