|
1. K. Zhang, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering: A, 508 (2009) 214-219. 2. J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, 65 (2013) 1759-1771. 3. J.W. Yeh, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (2004) 299-303. 4. J.W. Yeh, High-entropy alloys–a new era of exploitation, Materials Science Forum, Trans. Tech. Publ., (2007). 5. C.Y. Hsu, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268 (2010) 653-659. 6. J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim-Sci. Mat., 31 (2006) 633-648. 7. M.H. Tsai, Three strategies for the design of advanced high-entropy alloys, Entropy, 18 (2016) 252. 8. C. Ng, Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172. 9. M.H. Tsai, A second criterion for sigma phase formation in high-entropy alloys, Materials Research Letters, 4 (2016) 90-95. 10. F. Zhang, An understanding of high entropy alloys from phase diagram calculations, Calphad, 45 (2014) 1-10. 11. J. Van Laar, Melting or solidification curves in binary system, Z Phys Chem, 63 (1908) 216. 12. L. Kaufman, H. Bernstein, Computer calculation of phase diagrams, Academic Press, (1970). 13. A. Pelton, C. Bale, Computational techniques for the treatment of thermodynamic data in multicomponent systems and the calculation of phase equilibria, Calphad, 1 (1977) 253-273. 14. H. Lukas, J. Weiss, E.T. Henig, Straegies for the calculation of phase diagrams, Calphad, 6 (1982) 229-251. 15. A. Turnbull, A general computer program for the calculation of chemical equilibria and heat balances, Calphad, 7 (1983) 137-147. 16. M.G. Jo, Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi, Metals and Materials International, 24 (2018) 73-83. 17. A. Manzoni, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy, Ultramicroscopy, 132 (2013) 212-215. 18. C. Zhang, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433. 19. F. Otto, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755. 20. B. Schuh, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Materialia, 96 (2015) 258-268. 21. R. Feng, Design of light-weight high-entropy alloys, Entropy, 18 (2016) 333. 22. N. Stepanov, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Materials Letters, 142 (2015) 153-155. 23. O. Senkov, S. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Materialia, 68 (2014) 214-228. 24. O. Senkov, C. Woodward, D. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys, Jom, 66 (2014) 2030-2042. 25. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132 (2012) 233-238. 26. B. Cantor, Multicomponent and high entropy alloys, Entropy-Switz 16 (2014) 4749-4768. 27. Z.W. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y.R. Wen, T. Fujita, A. Hirata, M.W. Chen, G. Chen, B.A. Chin, A nanoscale co-precipitation approach for property enhancement of Fe-base alloys, SCI. REP-UK., 3 (2013) 1327. 28. B. Cantor, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218. 29. A. Inoue, Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems, Journal of Non-Crystalline Solids, 250 (1999) 552-559. 30. C.Y. Hsu, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metallurgical and Materials Transactions A, 35 (2004) 1465-1469. 31. T.K. Chen, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surface and Coatings Technology, 188 (2004) 193-200. 32. B. Cantor, K. Kim, P.J. Warren, Novel multicomponent amorphous alloys, Materials Science Forum, Trans. Tech. Publi., (2002). 33. J. Dąbrowa, Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x= 0; 0.5; 1), Intermetallics, 84 (2017) 52-61. 34. M.H. Tsai, J. W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123. 35. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511. 36. C.J. Tong, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 1263-1271. 37. C.J. Tong, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 881-893. 38. L. Anmin, X. Zhang, Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements, 金属学报英文版, 22 (2009) 219-224. 39. O. Senkov, Refractory high-entropy alloys, Intermetallics, 18 (2010) 1758-1765. 40. M.F. del Grosso, G. Bozzolo, H.O. Mosca, Determination of the transition to the high entropy regime for alloys of refractory elements, Journal of Alloys and Compounds, 534 (2012) 25-31. 41. M. Lucas, Absence of long-range chemical ordering in equimolar FeCoCrNi, Applied Physics Letters, 100 (2012) 251907. 42. K. Zhang, Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics, 22 (2012) 24-32. 43. F. Otto, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia, 61 (2013) 2628-2638. 44. S. Guo, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics, 41 (2013) 96-103. 45. K.Y. Tsai, M. H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897. 46. K.H. Cheng, Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets, Annales de chimie, (2006). 47. B.S. Murty, High-entropy alloys, Elsevier, (2019). 48. D.J. Fisher, High-Entropy Alloys-Microstructures and Properties, Foundations of Materials Science and Engineering, 86 (2015) 1. 49. G. Sheng, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International, 21 (2011) 433-446. 50. J.W. Yeh, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions A, 35 (2004) 2533-2536. 51. A. Takeuchi, A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Materials Science and Engineering: A, 304 (2001) 446-451. 52. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions, 46 (2005) 2817-2829. 53. Y. Zhang, Solid‐solution phase formation rules for multi‐component alloys, Advanced Engineering Materials, 10 (2008) 534-538. 54. H. Sheng, M. Gong, L. Peng, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Materials Science and Engineering: A, 567 (2013) 14-20. 55. J. Zhu, P. Liaw, C. Liu, Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys, Materials Science and Engineering: A, 239 (1997) 260-264. 56. S. Guo, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of applied physics, 109 (2011) 103505. 57. A. Takeuchi, A. Inoue, Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18 (2010) 1779–1789. 58. F. De Boer, Cohesion in Metals: Transition Metal Alloys, 1 (1988) 758. 59. O. Senkov, Accelerated exploration of multi-principal element alloys for structural applications, Calphad, 50 (2015) 32-48. 60. H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method, 131 (2007). 61. S.L. Chen, The PANDAT software package and its applications, Calphad, 26 (2002) 175-188. 62. S. Chen, On the calculation of multicomponent stable phase diagrams, Journal of phase equilibria, 22 (2001) 373-378. 63. L.J. Santodonato, Predictive multiphase evolution in Al-containing high-entropy alloys, Nature communications, 9 (2018) 4520. 64. W. Cao, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad, 33 (2009) 328-342. 65. C. Huang, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surface and Coatings Technology, 206 (2011) 1389-1395. 66. R.M. Martin, Electronic structure: basic theory and practical methods, (2004). 67. S. Curtarolo, Predicting crystal structures with data mining of quantum calculations, Physical review letters, 91 (2003) 135503. 68. D. Morgan, G. Ceder, S. Curtarolo, High-throughput and data mining with ab initio methods, Measurement Science and Technology, 16 (2004) 296. 69. S. Curtarolo, The high-throughput highway to computational materials design, Nature materials, 12 (2013) 191-201. 70. M.L. Green, I. Takeuchi, J.R. Hattrick-Simpers, Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials, Journal of Applied Physics, 113 (2013) 231101. 71. R. Potyrailo, Combinatorial and high-throughput screening of materials libraries: review of state of the art, ACS Combinatorial Science, 13 (2011) 579-633. 72. R.A. Potyrailo, I. Takeuchi, Role of high-throughput characterization tools in combinatorial materials science, Measurement Science and Technology, 16 (2004) 1-4. 73. K. Rajan, Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery, Annual Review of Materials Research, 38 (2008) 299-322. 74. D. Miracle, New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scripta Materialia, 127 (2017) 195-200. 75. D.B. Miracle, Exploration and development of high entropy alloys for structural applications, 16 (2014) 494-525. 76. D.B. Miracle, Critical Assessment 14: High entropy alloys and their development as structural materials, Materials Science and Technology, 31 (2015) 1142-1147. 77. R. Akid, Corrosion of engineering materials, Handbook of Advanced Materials, (2004) 487. 78. D.G. Enos, L.L. Scribner, The potentiodynamic polarization scan, Solartron Instruments, Hampshire, UK, Technical Report, (1997). 79. Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: A review, Metals, 7 (2017) 43. 80. R. Ovarfort, Critical pitting temperature measurements of stainless steels with an improved electrochemical method, Corrosion Science, 29 (1989) 987-993. 81. U.K. Mudali, B. Rai, Corrosion science and technology: mechanism, mitigation and monitoring, (2008). 82. F.R. De Boer, Cohesion in metals, (1988). 83. A. Standard, E92, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, PA (2003). 84. Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Materials Chemistry and Physics, 92 (2005) 112-117. 85. C.M. Lin, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, Journal of Alloys and Compounds, 624 (2015) 100-107. 86. J. Westbrook, R. Fleischer, Intermetallic Compounds, Structural Applications of, Wiley, (2000). 87. Z. Tang, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems, Jom, 65 (2013) 1848-1858. 88. G. Ghosh, A. Van de Walle, M. Asta, First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM= Ti, Zr and Hf) systems: a comparison of cluster expansion and supercell methods, Acta Materialia, 56 (2008) 3202-3221. 89. G. Ghosh, M. Asta, First-principles calculation of structural energetics of Al–TM (TM= Ti, Zr, Hf) intermetallics, Acta Materialia, 53 (2005) 3225-3252. 90. C. Li, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, Journal of Alloys and Compounds, 475 (2009) 752-757. 91. U. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, Journal of Applied Physics, 74 (1993) 1692-1696. 92. C.M. Lin, H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19 (2011) 288-294. 93. C. Kwok, F. Cheng, H. Man, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution, Materials Science and Engineering: A, 290(2000) 145-154. 94. M. Oyaidzu, Effects of tritiated water on corrosion behavior of SUS304, Fusion Science and Technology, 60 (2011) 1515-1518. 95. C.C. Tung, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Materials letters, 61 (2007) 1-5. 96. T. Courtney, Mechanical behavior of materials, Waveland Press (2005) 80-136. 97. R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, Boston: PWS Publishing Company, (1994). 98. G. Dieter, Mechanical Metallurgy, SI Metric Edition. London, McGrawhill Book Company, (1988).
|