跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張詠欽
研究生(外文):CHANG,YUNG-CHIN
論文名稱:高性能鋼板與混凝土複合剪力牆近斷層耐震性能研究
論文名稱(外文):Seismic Behavior of High-Performance Steel-Concrete-Steel Composite Shear Wall Systems Subjected to Near-Fault In-Plane Shear Loads
指導教授:張惠雲張惠雲引用關係鄭錦銅
指導教授(外文):CHANG,HEUI-YUNGCHENG,CHIN-TUNG
口試委員:潘煌鍟俞肇球林克強張惠雲鄭錦銅
口試委員(外文):PAN,HUANG-HSINGYU,CHAU-CHOLIN,KER-CHUNCHANG,HEUI-YUNGCHENG,CHIN-TUNG
口試日期:2020-06-04
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:196
中文關鍵詞:鋼板與混凝土複合剪力牆高軸力鋼材比細長比近斷層應變率
外文關鍵詞:Steel-Concrete-Steel Composite Shear WallLow yield steelAxial LoadReinforcement ratioSlenderness ratioNear fault effectStrain rate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
合剪力牆泛指使用兩種以上材料構成之抗剪力牆體,在本研究中提及之鋼板與混凝土複合剪力牆,便是以兩片鋼面板內填充混凝土材料以及剪力連接器(剪力釘)組合而成的牆體,其特色為具有高勁度與強度。因其施工快速與高強度的特性,最早被應用於核電廠內結構建造,近年來則多應用於大型船體或超高樓層結構中。而在高樓結構中,牆體會受到高軸力之影響,然而現今規範與實驗中卻鮮少將軸力影響考慮在內。且多數實驗皆以靜態載重作為試驗程序,未將近斷層或應變率納入變數之中。從過往研究裡,上述條件皆可能是影響牆體行為的要素之一。
因此,本研究試將牆體厚度(鋼材比)、剪力釘間距(細長比)、軸力比以及動態試驗之影響納入實驗參數中,考量各參數可能帶來的影響。試驗牆體鋼面板主要以低降伏鋼製作,其可有效增加鋼面板韌性能力,以及增大剪力釘間距等優點。為同時向試體施加軸力與橫向剪力作用,本研究實驗皆在國家地震研究中心南部實驗室,藉由BATS(Bi-Axial Dynamic Testing System)機台進行。其共製作八座尺寸1200x1200mm,高寬比為1.0的複合鋼板剪力牆,進行靜態及動態的反覆側推試驗。
試驗結果發現,牆體厚度與承受軸力的高低對試體極限強度的影響不大,但軸力卻會影響試體對於橫向變形的消能能力。動態試驗則相對於靜態在極限強度方面會有些許提升,且在強度、位移相似狀況下,韌性消能能力較優。而剪力釘間距在錨定效果上有明顯差異,採保守公式計算剪力釘間距試體在韌性消能能力上能有效提升。
實驗後分析部分主要採用現有規範AISC、ACI、Epackachi et al.(2015)學者以及本文所提出之強度預測理論,與實驗結果進行比較與討論。而本文理論部分則是以鋼板與混凝土強度分開計算再予以疊加的方式,其結果顯示現有規範與本文理論部分相對較為保守,實驗強度約在預測值之140%~180%左右,Epackachi理論則明顯高估試體極限強度,實驗強度平均在其預測值之84%。

Composite shear wall generally refers to a wall composed of more than two materials. In this paper, Steel-concrete-steel composite shear wall is made of two steel faceplate with concrete infill cast together by shear connectors. Since the composite walls have very good stiffness and strength, it was extensively used in nuclear power plant and skyscrapers to resist axial and lateral forces. However, the influence of the axial load and near-fault effect is rarely taken into account in the current specifications and experiments. According to previous studies, above conditions may be one of the important factors affecting the wall behavior. Therefore, this research considered the parameter including reinforcement ratio、slenderness ratio、axial load ratio and near-fault effect. The steel faceplate of specimen are made of low-yield steel that can extend the ductility of composite walls and reduce the amount of shear studs used in the inner walls. In addition, in order to apply axial load and shear force to the specimen simultaneously, all the experiment were conducted by BATS((Bi-Axial Dynamic Testing System) in NCRCC Tainan Laboratory. In this research, eight specimens were constructed and tested, having the same aspect ratio of 1.0 with size of 1200x1200 mm.

Test results show that the axial load may have marginal effect on the ultimate strength of composite walls. However, it may significantly affect post-peak ductility of the walls. Comparewith static tests, the specimens tested by the dynamic procedure have a slight increase in the ultimate strength and ductility of the walls when applied with similar drift level. And the spacing of shear studs in inner walls may significantly affect achoring effect of steel faceplates. If the spacing of shear studs is conservatively designed, the ductility of the specimen will be apparently improved.
The strength of the walls is predicted by the existing specifications including AISC, ACI and the theory proposed by Epackachi et al.(2015) and this paper. In the proposed theorey of this paper, the strength of the steel faceplate and concrete are calculated separately and then supperimposed together. The analytical results predicted by the specifications and the theory of this paper underestemate the test results, which are in the range of 140%~180% of the analytical results; while the theory proposed by Epackachi et al (2015) obviously overestimated the ultimate shear strength of the specimens, which are on average 84% of the predictions.

謝誌 i
目錄 ii
表目錄 v
圖目錄 viii
摘要 1
ABSTRACT 2
第一章 前言 5
1.1 研究背景 5
1.2 研究目的 7
1.3 研究大綱 8
第二章 文獻回顧 11
2.1 大綱 11
2.2 規範強度公式 11
2.3 鋼板混凝土複合牆相關試驗 12
2.3.1 Ozaki et al.(2001)鋼板混凝土複合牆側推試驗 12
2.3.2 Ozaki et al.(2004)鋼板混凝土複合牆純剪試驗 14
2.3.3 Epackachi et al.(2013)鋼板混凝土複合牆平面內側推試驗 16
2.3.4 Xiaodong Ji et. al. (2017)高樓結構中複合式鋼板剪力牆行為 17
2.3.5 陳柏安(2015) 低矮型鋼板混凝土複合牆隻耐震性能試驗與分析 18
2.4 鋼板混凝土複合牆剪力強度預測理論: 19
2.4.1 Ozaki et al.(2004)平面內反覆剪力行為預測理論公式 19
2.4.2 Varma et al.(2011) 純剪行為MBM理論模型 24
2.4.3 Epackachi et al.(2015)複合牆剪力與撓曲強度預測理論 25
2.5 近斷層相關文獻 26
2.5.1 Krawinkler et al.(2000)考慮近斷層效應之載重程序 26
2.5.2 Sarno (2013) 多次地震對結構之影響 26
2.5.3 Lanning et al. (2016) 動態載重試驗歷時參考 28
2.5.4 張正霖 (2016) 近斷層地震對遲滯隔震系統之影響 29
第三章 實驗設計與程序 60
3.1 實驗計畫 60
3.2 試體設計 61
3.2.1 試體設計參數 61
3.2.2 試體上下端板開孔與摩擦力檢核 64
3.2.3 試體撓曲塑性分析 65
3.3 試體製作 66
3.4 材料試驗 66
3.4.1 混凝土 66
3.4.2 鋼板 66
3.5 側推歷時 67
3.5.1 靜態載重側推歷時 67
3.5.2 動態載重側推歷時 67
3.6 量測儀器配置 68
3.6.1 位移計 68
3.6.2 應變計配置圖 68
第四章 實驗結果 90
4.1 動態試驗程序調整 90
4.1.1 致動器輸入與輸出誤差 90
4.1.2 XVA比較圖 91
4.2 試體破壞模式 92
4.3 遲滯迴圈圖 95
4.4 試體破壞包絡線 97
4.5 試體吸收能量 97
4.6 應變計 98
4.6.1 鋼面板三軸應變計分析 98
4.6.2 底部單軸應變計分析 99
4.7 試體實驗數據 100
第五章 理論分析 144
5.1 規範預測比較 144
5.2 Epackachi理論預測比較 145
5.3 本文理論強度預測 145
5.3.1 混凝土 145
5.3.2 鋼板 149
5.3.3 預測與實驗數值比較 150
5.4 結果比較與討論 150
第六章 結論與建議 171
6.1 結論 171
6.2 建議 173
參考文獻 175
附錄 178


高翊書 (2019),「受軸力影響之鋼板混凝土複合牆耐震行為分析研究」,台灣大學土木系碩士論文,黃尹男教授指導,民國一百零八年七月
張正霖 (2016),「近斷層地震對遲滯隔震系統之影響」,國立台灣科技大學營建工程系碩士論文,黃振興教授指導,民國一百零五年七月。
陳泊文 (2018),「鋼板與混凝土複合剪力牆系統耐震性能研究」,國立高雄科技大學營建工程系碩士論文,鄭錦銅教授指導,民國一百零七年七月。
陳柏安 (2015),「低矮型鋼板混凝土複合牆之耐震性能試驗與分析」,台灣大學土木系碩士論文,黃尹男教授指導,民國一百零四年八月。
曾皓鼎 (2014),「鋼板混凝土複合剪力牆之耐震性能研究」,國立交通大學土木工程學系,碩士學位論文,劉俊秀、鄭錦銅教授指導,民國105年12月。
鄭錦銅、林衍宏、盧煉元 (2001),「圓形鋼管混凝土樑柱接頭之剪力傳遞行為」,國家地震工程研究中心研究報告,NCREE 01-018,民國九十年八月。
鄭錦銅、張詠欽、張惠雲 (2019),「低降伏鋼板與混凝土複合剪力牆耐震性能研究」,2019工程永續與土木防災研討會發表之論文,義守大學。
鄭錦銅、曾皓鼎、鍾立來 (2017b),「鋼板與混凝土複合剪力牆鋼構架承受平面剪力之非線性行為」,2017創新鋼構造耐震技術研討會,民國一百零六年九月二十九日,台北,台灣,235-246頁。
ACI 349M, Code requirements for nuclear safety-related concrete structures and commentary (Metric), ACI 349M-06, American Concrete Institute, Farmington Hills, MI, 2006.
ANSI/AISC N690-12,ANSI/AISC N690s1-15,”Specification for Safety-Related Steel Structures for Nuclear Facilities.”
Amit H. Varma, Kai Zhang, Hoseok Chi, Peter Booth , Tod Baker. “In-Plane Shear Behavior of SC Composite Walls: Theory vs. Experiment.” Transaction, SMiRT 21,6-11 November, 2011, New Delhi, India.
J. Lanning, G. Benzoni, and C.-M. Uang (2016) “Using buckling-restrained braces on long-span bridges. II: Feasibility and development of a near-fault loading protocol,” Journal of Bridge Engineering, 21(5), 04016002.
J. Seo, A. H. Varma, K. Sener, and D. Ayhan (2016) “Steel-plate composite (SC) walls: In-plane shear behavior, database and design,” Journal of Constructional Steel Research, 119, pp. 202-215.
K. Zhang, A. H. Varma, S. R. Malushte and S. Gallocher (2014) “Effect of shear connectors on local buckling and composite action in steel concrete composite walls,” Nuclear Engineering and Design, 269, pp. 231-239.
L. Di Sarno, “Effects of multiple earthquakes on inelastic structural response,” Engineering Structures, Vol. 56, November 2013, pp. 673-681.
M. Ozaki, S. Akita, H. Osuga, T. Nakayama, and N. Adachi. (2004) “Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear,” Nuclear Engineering and Design, 228, pp. 225–244.
Mander, J.B., Priestley, M.J.N., and Park, R.,(1988) “Theoretical Stress-Strain Model for Confined Concrete” J. Struct. Drv., ASCE, 114(8), pp.1804-1826.
S. Epackachi, A. S. Whittaker, A. H. Varma, and E. G. Kurt (2015) “Finite element modeling of steel-plate concrete composite wall piers,” Engineering Structures, Vol. 100, pp.368-384.
S. Epackachi, A. S.Whittaker, and Y.-N. Huang (2015) “Analytical modeling of rectangular SC wall panels,” Journal of Constructional Steel Research, 105, pp. 49-59.
T. Fukumoto, B. Kato, and K. Sato (1987) “Concrete filled steel bearing wall,” IABSE Symposium, Paris-Versailles.
T. Fukumoto and Morita Koji (2000) “Elasto Plastic Behavior of SteelBeam to Square Concrete Filled Steel Tube(CFT)Column Connections” Proceedings of 6th ASCCS Conference, Composite and Hybrid Structures, Vol.1,pp.565-572.
Takeda, T. ,Yamaguchi, T. , Nakayama, T. ,Akiyama, K. ,Kato, Y. (1995) “Experimental study on shear characteristics of a concrete filled steel plate wall.” Transactions of the 13thInternational Conference on Structural Mechanics in Reactor Technology(SMiRT 13), Escola de Engenharia – Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil, 13-18, August 1995.
X., Ji, X. Cheng, X. Jia and A.H. Varma (2017) “Cyclic In-Plane Behavior of Double-Skin Composite Walls in High-Rise Buildings,” Journal of Structural Engineering (ASCE), 143(6), 04017025.
Y-N. Huang, C-C. Chang and B. S. Lin (2017) “In-plate cyclic behavior of shear-critical steel-plate composite walls,” 19th Korea-Japan-Taiwan Joint Seminar on Earthquake Engineering for Building Structures (SEEBUS 2017), pp. 195-203, Sept.. 8-9, 2017, Seoul, Korea.
Zhang, L. X. B., and Hsu, T. T. C.,(1998) ”Behavior and Analysis of 100MPa Concrete Membrance Elements, “Journal of Structural Engineering, ASCE,Vol.124, No.1, Jan., pp.24-34.

電子全文 電子全文(網際網路公開日期:20241231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top