(3.237.178.91) 您好!臺灣時間:2021/03/07 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊宗穎
研究生(外文):Zhuang,Zong-Ying
論文名稱:奈米空氣通道場發射二極體之特性研究
論文名稱(外文):Nanoscale Air-channel Field Emission Diode
指導教授:張文騰張文騰引用關係
指導教授(外文):Chuang,Wen-teng
口試委員:張文騰葉文冠楊宜霖
口試委員(外文):Chuang,Wen-tengYeh,Wen-KuanYang,Yi-Lin
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:場發射電流奈米場發射二極體有限元素分析
外文關鍵詞:field emission currentnano-field emission diodefinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究藉由場發射兩端點圖形的不對稱特性,造成發射端點電場與發射電子數量的不一致,形成二極體的特性曲線。由於製作的元件,其場發射陰極陽極間距離只有40~50奈米,小於電子於大氣中的平均自由路徑( 200 nm),因此理論上可以大幅減少粒子散射的機率,可以在常壓下操作。本研究同時比較一般固態二極體差異,並以有限元素分析元件的粒子拋射與特性。
This thesis fabricated and measured nanoscale field emission diode by utilizing an asymmetry anode-cathode patterns to create asymmetric electric field and field emission current between the forward and reverse directions. The micrograph of the anode-cathode transport distance is about 40-50 nanometers, which is far less than the mean free path of electrons in the atmospheric pressure (~200 nm). This property enables the current devices to operate under atmospheric pressure. The study also compared the electrical characteristics with a solid-state diode. A particle trajectory model by finite element analysis is to analyze the asymmetric field emission current.
論文審定書i
誌謝ii
摘要iii
ABSTRACTiv
目錄v
圖目錄vii
表目錄viii
第一章 緒論1
1-1 研究背景與動機1
1-2 文獻探討3
1-3 真空管介紹4
1-4 固態元件發展6
1-5 論文架構8
第二章 電子元件發展與基礎理論9
2-1 真空通道電晶體介紹9
2-2 奈米大氣通道電晶體介紹9
2-3 發射電子理論10
2-3-1 空間電荷限制電流 Child–Langmuir law 11
2-3-2 蕭特基發射 Schottky Emission12
2-3-3傅勒-諾德海姆穿隧 F-N Tunneling13
2-3-4普爾-法蘭克發射(Poole-Frenkel Emission)15
第三章 實驗設計模擬與實驗儀器17
3-1 元件設計17
3-2 有限元素 COMSOL 模擬元件22
3-3奈米大氣通道元件製造流程23
3-4 實驗儀器26
3-4-1 Keithley 2400 Source Meter26
3-4-2 光學顯微鏡及探針平台26
3-5 實驗軟體26
第四章 實驗結果30
4-1 有限元素模擬分析結果30
4-2元件實際拍攝33
4-3 元件量測數據之結果36
4-3-1 非對稱型電極二極體量測結果與P-N二極體之比較36
4-3-2 對稱型電極二極體量測結果及比較37
4-3-3 奈米大氣通道元件之F-N plot37
第5章 結論43
5-1 結論43
5-2 未來展望44
參考文獻 45


[1] J. W. Han, J. S. Oh, and M. Meyyappan, " Co-fabrication of Vacuum Field Emission Transistor (VFET) and MOSFET ", IEEE Transactions on Nanotechnology, Vol. 13, pp. 464 - 468, May 2014.
[2] S. Jennings, "The mean free path in air,," Journal of Aerosol Science, vol. 19, no. 2, pp. 159-166, 1988.
[3]許祖榮,垂直堆疊結構場發射真空通道元件特性之研究,國立高雄大學電機工程系碩士論文, 2018.
[4] I. J. Park, S. Jeon , and C. Shin, "A New Slit-Type Vacuum-Channel Transistor," IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4186-4191, 2014.
[5] S. Srisonphan, Y. S. Jung, and H. K. Kim, "Metal–oxide–semiconductor fieldeffect transistor with a vacuum channel," Nature Nanotechnology, vol. 7, p. 504, 2012.
[6] J. Nieder, A. D. Wieck, P. Grambow, H. Lage, D. Heitmann, K. v. Klitzing, and K. Ploog, "One‐dimensional lateral‐field‐effect transistor with trench gate‐ channel insulation," Applied Physics Letters, vol. 57, no. 25, pp. 2695-2697, 1990.
[7] K. Subramanian, W. P. Kang, J. L. Davidson, B. K. Choi, and M. Howell, "Single-mask multiple lateral nanodiamond field emission devices fabrication technique," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 24, no. 2, pp. 953-957, 2006.
[8] K. Subramanian, W. P. Kang, and J. L. Davidson, "A Monolithic Nanodiamond Lateral Field Emission Vacuum Transistor," IEEE Electron Device Letters, vol. 29, no. 11, pp. 1259-1261, 2008.
[9] K. Subramanian, W. P. Kang, and J. L. Davidson, "Nanocrystalline diamond lateral vacuum microtriode," Applied Physics Letters, vol. 93, no. 20, p. 203511, 2008.
[10] J. Han and M. Meyyappan, "Nanoscale vacuum channel transistor," in 14th IEEE International Conference on Nanotechnology, 2014.
[11] J.W. Han, D.I. Moon, and M. Meyyappan, "Nanoscale Vacuum Channel Transistor," Nano Letters, vol. 17, no. 4, pp. 2146-2151, 2017.
[12] Y. Kudo,D. Takeuchi,D. Kuwabara,T. Makino,M. Ogura,H. Kato,H. Okushi, and S. Yamasaki, "Electron emission from nitrogen-containing diamond with narrow-gap coplanar electrodes," Japanese Journal of Applied Physics, vol. 53, no. 5S1, pp. 1-4, 2014.
[13] J. L. Davidson, W. P. Kang, K. Subramanian, A. G. Holmes-Siedle, R. A. Reed , and K. F. Galloway, "Diamond Vacuum Electronic Device Behavior After High Neutron Fluence Exposure," IEEE Transactions on Nuclear Science, vol. 56, no. 4, pp. 2225-2229, 2009.
[14] Xu Ji, Gu Zhuyan, Yang Wenxin, Wang Qilong, and Zhang Xiaobing, "Graphene-Based Nanoscale Vacuum Channel Transistor," Nanoscale Research Letters, vol. 13, no. 1, p. 311, 2018.
[15] N. D. Pikelny, "Triode Vacuum Tube Laboratory Development, Department of Physics ", University of Illinois at Urbana-Champaign, (2000).
[16] A.L. Rodriguez et al., " Dependence of Generation–Recombination Noise With Gate Voltage in FD SOI MOSFETs ,”IEEE Transactions on Electron Devices, Vol. 59, pp. 2780-2786, August 2012.
[17] W.M. Jones, D. Lukin, and A. Scherer "Practical nanoscale field emission devices for integrated circuits," Applied Physics Letters, vol. 110, no. 26, p. 263101,2017.
[18] W. P. Kang, J. L. Davidson, K. Subramanian, B. K. Choi, and K. F. Galloway, "Nanodiamond Lateral VFEM Technology for Harsh Environments," IEEE Transactions on Nuclear Science, vol. 54, no. 4, pp. 1061-1065, 2007.
[19] T. K. S. Wong and S. G. Ingram, "Observational of Fowler-Nordheim tunnelling at atmospheric pressure using Au/Ti lateral tunnel diodes," Journal of Physics D: Applied Physics, vol. 26 , no. 6, pp. 979-985, 1993.
[20] J.W. Han, J. Sub Oh, and M. Meyyappan, "Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor," Applied Physics Letters, vol. 100, no. 21, pp. 213505-1-4, 2012.
[21] W. P. Kang, K. Subramanian, J. L. Davidson, B. K. Choi , and M. Howell, "Nanodiamond Lateral Field Emission Devices: Fabrication, Emission Current Scaling,Temperature and Radiation-Tolerance," in 19th International Vacuum Nano electronics Conference, 2006.
[22] J. Han and M. Meyyappan, "The device made of nothing," IEEE Spectrum, vol. 51, no. 7, pp. 30-35, 2014.
[23] J. Kim, J. Kim, H. Oh, M. Meyyappan, J. W. Han, and J.S. Lee, "Design guidelines for nanoscale vacuum field emission transistors," Journal of Vacuum Science & Technology B, vol. 34, no. 4, 2016.
[24] S. Srisonphan, Y. S. Jung , and H. K. Kim, "Metal–oxide–semiconductor field effect transistor with a vacuum channel," Nature Nanotechnology, vol. 7, p. 504, 2012.
[25] 蕭宏, 半導體製程技術導論, 全華圖書, 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔