|
[1] Iddrisu Mohammed Muniru , Okpoti Christopher Adjei, and Gbolagade Kazeem Alagbe, SOME PROOFS OF THE CLASSICAL INTEGRAL HARDY INEQUALITY, Korean J.Math. 22 (2014), No. 3 [2] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314-317. [3] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976),353-372 [4] R.L.Wheeden and A.Zygmund: Measure and Integral - An introduction to Real Analysis, Marcel Dekker, 1977. [5] M.Willem,Minimax Theorems,Birkhäuser,Boston,1996 [6] M.Struwe,Variational methods (Applications to nonlinear PDE and Hamiltonian systems), Springer-Verlag, 1990 [7] Saleh Almezel, Qamrul Hasan Ansari, Mohamed Amine Khamsi,Topics in Fixed Point Theory,Springer Science & Business Media, 2013 [8] David G. Costa,An Invitation to Variational Methods In Di¤erential Equa- tions,Springer Science & Business Media,2010 [9] Hwai-Chiuan Wang,Nonlinear Analysis,National Tsinf Hua University,2003 [10] Landau, E.: A note on a theorem concerning series of positive terms. J. Lond. Math. Soc. 1,3839 (1926) [11] A. A. Balinsky,W. D. Evans, and R. T. Lewis. The analysis and geometry of Hardys inequality.Universitext. Springer, Cham, 2015. [12] A. Ambrosetti, G. J. Azorero, I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219242. [13] A. Ambrosetti, H. Brezis, G. Cerami, Combined e¤ects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519543. [14] Adimurthy, F. Pacella, L. Yadava, On the number of positive solutions of some semilinear Dirichlet problems in a ball, Di¤. Int. Equations 10 (6) (1997), 11571170. [15] P. A. Binding, P. Drábek, Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electr. J. Di¤. Eqns. 5 (1997), 111. [16] T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001), 549569. [17] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for superlinear elliptic problems on RN, Comm. Partial Di¤erential Equations 20 (1995), 17251741. [18] K. J. Brown, T. F. Wu, A
brering map approach to a semilinear elliptic boundary value problem, Electr. J. Di¤. Eqns. 69 (2007), 19. [19] K. J. Brown, T. F. Wu, A
bering map approach to a potential operator equation and its applications, Di¤. Int. Equations 22 (2009), 10971114. [20] K. J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Di¤. Equns 193 (2003), 481499. [21] J. Chabrowski, JoãoMarcos Bezzera do Ó, On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr. 233234 (2002), 5576. [22] C.Y. Chen, T.F. Wu, Multiple positive solutions for inde
nite semilinear elliptic problems involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. 144A(2014), 691709. [23] L. Damascelli, M. Grossi, F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire 16 (1999), 631652. [24] P. Drábek, S. I. Pohozaev, Positive solutions for the pLaplacian: application of the bering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703726. [25] Y.H. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Di¤erential Equations 29 (2007), 397419. [26] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 17 (1974), 324353. [27] D. G. de Figueiredo, J. P. Gossez, P. Ubilla, Local superlinearity and sublinearity for inde
nite semilinear elliptic problems, J. Funct. Anal. 199 (2003), 452467. [28] J. V. Goncalves, O. H. Miyagaki, Multiple positive solutions for semilinear elliptic equations in RN involving subcritical exponents, Nonlinear Analysis: T. M. A. 32(1998), 4151. [29] T. S. Hsu, H. L. Lin, Multiple positive solutions for semilinear elliptic equations in RN involving concave-convex nonlineatlties and sign-changing weight functions, Abstract and Applied Analysis, Vol 2010 ID658397 (2010), 21 pages. [30] P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case Part I, Ann. Inst. H. Poincaré Anal. Non Lineairé 1 (1984),109145. [31] F. F. Liao and C. L. Tang, Four positive solutions of a quasilinear elliptic equation in RN; Comm. Pure Appl. Anal. 12 (2013), 25772600. [32] Z. Liu, Z. Q. Wang, Schrödinger equations with concave and convex nonlinearities,Z. Angew. Math. Phys., 56 (2005), 609629. [33] T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem II, J. Di¤. Eqns. 158 (1999), 94151. [34] Francisco Odair de Paiva, Nonnegative solutions of elliptic problems with sublinear inde
nite nonlinearity, J. Func. Anal. 261 (2011), 25692586. [35] M. Struwe, Variational Methods, Springer-Verlag, Berlin-Heidelberg, Second edition, 1996. [36] M. Tang, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003),705717. [37] T. F. Wu, Multiplicity of positive solutions for semilinear elliptic equations in RN,Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 647670. [38] T. F. Wu, Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J. Di¤er. Equat. 249 (2010), 14591578. [39] T. F. Wu, On semilinear elliptic equations involving concaveconvex nonlinearities and sign-changing weight function, J. Math. Anal. Appl. 318 (2006), 253270. [40] T. F. Wu, Multiple positive solutions for a class of concave-convex elliptic problem in RN involving sign-changing weight, J. Funct. Anal. 258 (2010), 99131. [41] T.F. Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Commun. Pure Appl. Anal. 7 (2008), no. 2, 383405. [42] H. Yin, Z. Yang, Z. Feng, Multiple positive solutions for a quasilinear elliptic equation in RN, Di¤. Integ. Eqns 25 (2012), 977992. [43] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the SchrödingerPoisson equations with steep well potential, J. Di¤. Eqns. 255 (2013),123. [44] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math. 45 (1992),1217-1269.
|