跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林承衞
研究生(外文):LIN, CHENG-WEI
論文名稱:以實驗設計法評估電化學技術處理熱脫脂洗滌水之最適化操作條件
論文名稱(外文):Evaluate the Optimal Operating Conditions of Electrochemical Technology to Treat Washing Water of Thermal Degreasing Agent by Design of Experiments
指導教授:林永昇林永昇引用關係周偉龍周偉龍引用關係
指導教授(外文):LIN, YUNG-SHENGCHOU, WEI-LUNG
口試委員:王志達黃淑玲劉奕宏
口試委員(外文):WANG, CHIH-TAHUANG, SHU-LINGLIU, YI-HONG
口試日期:2020-07-17
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:化學工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:115
中文關鍵詞:化學需氧量電化學技術電混凝田口實驗設計法反應曲面法
外文關鍵詞:Chemical oxygen demandElectrochemical technologyElectrocoagulationTaguchi methodResponse surface methodology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係使用電化學技術處理電鍍實廠之熱脫脂洗滌水廢液,處
理目標為廢液中含有之 COD 及微量重金屬,並利用田口實驗設計法 針對實驗因子之影響性進行排列分析,再透過反應曲面法結合成本計 算,進行最適化分析,尋求符合成本效益之處理條件。首先,進行單 因子實驗,尋找合適的實驗因子之水準,得結果為電流密度 60 mA/cm2、初始 pH2、極板材質 Al/Fe、隔板數 4、占空比 50 %、脈衝 頻率 100 Hz、初始過氧化氫濃度 50 mM,具有較佳的 COD 清除率。 以上述實驗結果為依據,進行田口實驗設計法,得各因子之影響顯著 性依序為初始過氧化氫濃度>初始 pH 值>極板材質>隔板數>占空比> 電流密度>脈衝頻率。考量各因子之影響性及尋求符合經濟效益之實 驗條件,選擇初始過氧化氫濃度、初始 pH 值、電流密度作為反應曲 面法最適化分析之實驗因子,得結果為電流密度 32.2 mA/cm2、初始 過氧化氫濃度 35 mM、初始 pH 3.10,為最符合經濟效益之處理條件。 以反應曲面法之最適化條件分析重金屬去除率,得銅、鉻清除率皆為 99.9 %,鎳清除率 93.8 %。以 pH 值單因子之實驗數據求得電化學技 術對於熱脫脂洗滌水之吸附過程較適合以二級動力學進行描述。此 外,觀察 pH 值變化對濁度之影響,得知 pH 值提升至 7 以上時,Fe(OH)3II逐漸生成,有助於溶液濁度之去除。
This study used electrochemical technology to treat washing water of
thermal degreasing agent, and the targets contain traces of heavy metals and COD of the waste. Taguchi method was utilized to analyze the influence of experimental factors. Then, the response surface methodology combined with cost calculation for optimal analysis was applied to seek cost-effective treatment condition.
First, single-factor experiments was used to find suitable experimental factor levels, and the results show that the 60 mA / cm2 current density, initial pH 2, Al/Fe plate material, four bipolar electrode, 50% duty ratio, 100 Hz pulse frequency, 50 mM initial hydrogen peroxide got preferred COD removal. Based on the above experimental results, Taguchi method got the influence of each factor in the order: initial hydrogen peroxide concentration > initial pH > plate material > number of bipolar electrode > duty ratio > current density > pulse frequency. Considering the influence of each factor and cost-seeking experimental conditions, the initial hydrogen peroxide concentration, initial pH, and current density were selected as the experimental factors for the optimal analysis in the response surface method. The result show that 32.2 mA / cm2 current density, 35 mM initial hydrogen peroxide concentration, and initial pH 3.10 is the most economical treatment condition. The removal rate of heavy metals was analyzed by the optimized conditions in the response surface method, and the removal rates of copper and chromium were 99.9%, and the removal rate of nickel was 93.8%.
Based on the single-factor experimental data of initial pH, the second-order kinetic is more suitable to describe the adsorption process for the electrochemical technology to treat the washing water of thermal degreasing agent. In addition, observing the effect of pH changes on turbidity, it is known that raising the pH to above 7 will help the formation of ferric hydroxide and that will increase removal of solution turbidity.
致謝 ........................................................................................................ I
摘要 ....................................................................................................... II
Abstract ............................................................................................... IV
目錄 .......................................................................................................V
表目錄 ...............................................................................................VIII
圖目錄 ................................................................................................. IX
第 1 章 前言..............................................................................................1
1.1 研究源起 ....................................................................................1
1.2 研究動機與目的 ........................................................................3
第 2 章 文獻回顧......................................................................................5
2.1 電鍍工業簡介 ............................................................................5
2.1.1 電鍍流程 ................................................................................7
2.1.2 電鍍廢水之處理方法 ............................................................9
2.2 電混凝基本原理 ......................................................................17
2.2.1 傳統混凝機制 ......................................................................17
2.2.2 電混凝機制 ..........................................................................20
2.2.3 影響電混凝效能主要參數 ..................................................27
2.3 電混凝過程中吸附特性之探討 ..............................................34
2.3.1 吸附理論 ..............................................................................34
2.3.2 等溫吸附模式 ......................................................................36
2.3.3 動力學吸附模式 ..................................................................41
2.4 高級氧化程序 ..........................................................................43
2.5 實驗設計法 ..............................................................................47
2.5.1田口方法 ..............................................................................47
2.5.2反應曲面法 ..........................................................................50
第 3 章 實驗方法與設備........................................................................53
3-1實驗流程 ..................................................................................53
3-2實驗藥品、儀器與設備 ..........................................................57
3-3實驗藥品 ..............................................................................57
3-4驗儀器與設備 ......................................................................58
3-5實驗方法 ..................................................................................59
第 4 章 結果與討論................................................................................63
4.1 變單因子之操作條件探討 COD 清除效能 ...........................64
4.1.1 電流密度之影響 ..................................................................64
4.1.2 初始 pH 值之影響 ...............................................................67
4.1.3 極板材質之影響 ..................................................................70
4.1.4 外加隔板之影響 ..................................................................71
4.1.5 占空比之影響 ......................................................................72
4.1.6 脈衝頻率之影響 ..................................................................74
4.1.7 過氧化氫濃度之影響 ..........................................................76
4.2 吸附動力學之探討 ..................................................................78
4.3 pH 值對於濁度變化之探討 ........................................................82
4.4 以田口實驗設計法探討最適化條件 ......................................83
4.4.1 田口值交表分析 ..................................................................83
4.4.2 信噪比分析 ..........................................................................85
4.4.3 田口實驗設計法最適化條件分析 ......................................88
4.5 以反應曲面法探討經濟化之操作條件 ..................................91
4.5.1 反應曲面法之實驗設計 ......................................................91
4.5.2 反應曲面法之實驗數據相關性分析 ..................................92
4.6 重金屬去除率之評估 ............................................................102
第 5 章 結論..........................................................................................103
5.1 研究總結 ................................................................................103
5.2 改變單因子對於熱脫脂洗滌水之 COD 去除 .....................103
5.3 田口實驗設計法之探討 ........................................................104
5.4 反應曲面法之探討 ................................................................104
參考文獻 ................................................................................................106
Akansha, J., Nidheesh, P.V., Gopinath, A., Anupama, K.V., Kumar, M.S., Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process, Chemosphere, 2020, 253, 126652.
Asaithambi, P., Sajjadi, B., Aziz, A.R.A., Process Safety and Environment Protection, Performance evaluation of hybrid electrocoagulation process parameters for the treatment of distillery industrial effluent, 2016, S0957-5820(16), 30222-1
Bande, R.M., Prasad, B., Mishra, I.M., Wasewar, K.L., Oil field effluent water treatment for safe disposal by electroflotation, Chemical Engineering Journal, 2008, 137, 503-509.
Bayramoglu, M., Kobya, M., Eyvaz, M., Senturk, E., Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater, Separation and Purification Technology, 2006, 51, 404-408.
Benhadji, A., Ahmed, M.T., Maachi, R., Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba, Desalination, 2011, 277, 128-134.
Bigda, Consider Fenton’s Chemistry for Wastewater Treatment, Chemical Engineering Progress, 1995, 91, 62-66.
Cañizares, P., Jiménez, C., Martínez, F., Rodrigo, M.A., Sáez, C., The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters, Journal of Hazardous Materials, 2009, 163, 158-164.
Chou, W.L., Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation, Journal of Hazardous Materials, 2010, 177, 842-850.
Chou, W.L., Wang , C.T., Hsu, C.W., Huang, K.U., Liu, T.C., Removal of total organic carbon from aqueous solution containingpolyvinyl alcohol by electrocoagulation technology, Desalination, 2010, 259, 103-110.Chou, W.L., Wang , C.W., Huang, K.U., Liu, T.C., Electrochemical removal of salicylic acid from aqueous solutions using aluminum electrodes, Desalination, 2011, 271, 55-61.
Chen, Q.Y., Yao, Y., Li, X.Y., Lu, J., Zhou, J., Huang, Z.L., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, Journal of Water Process Engineering, 2018, 26, 289-300.
Chen, Y.M., Jaing, W.M., Liu, Y., Kang, Y., Quantitative contribution study and comparison between electrocoagulation, anode- electrocoagulation and chemical coagulation using polymer-flooding sewage, ECSN, 2020, S0045-6535(20), 30321-0.
Dabrowski, A., Hubicki, Z., Podkoscielny P., Robens, E., Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 2004, 56, 91-106.
Devlin, T.R., Kowalski, M.S., Pagaduan, E., Zhang, X.G., Wei, V., Electrocoagulation of raw wastewater using aluminum, iron, and magnesium electrodes, Journal of Hazardous Materials, 2018, S0304-3894(18), 30917-8.
Dolati, M., Aghapour, A.A., Khorsandi, H., Karimzade, S., Journal of Environmental Chemical Engineering, Boron removal from aqueous solutions by electrocoagulation at low concentrations, 2017, 5, 5150-5156.
Ehsan, M.P., Turcios, A.E., Cuff, G., Weichgrebe, D., Rosenwinkel, K.H., Vedenyapina, M.D., Sharifullina, L.R., Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption, Journal of Environmental Management, 2018, 228, 189-196.Elazzouzi, M., Haboubi, M., Elyouby, M.S., Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study, Materials Today : Proceedings, 2019, 13, 457-555.
Enjarlis, Application of Coagulation-Advanced Oxidation Process by O3/GAC in the Fan Belt Wastewater Treatment, APCBEE Procedia, 2014, 9, 145-150.
Ezechi, E.H., Isa., M.H., Muda, K., Kutty, S.R.M., A comparative evaluation of two electrode systems on continuous electrocoagulation of boron from produced water and mass transfer resistance, Journal of Water Process Engineering, 2020, 34, 101133.
Ferraz, F.M., Yuan, Q., Performance of oat hulls activated carbon for COD and color removal from landfill leachate, Journal of Water Process Engineering, 2020, 33, 101040.
Giles, C.H., Macewan, T.H., Nakhwa, S,N., Smith, D., A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids, Studies in Adsorption, 1960, 6, 3973 - 3993.
Holt, P.K., Barton, G.W., Wark, M., Mitchell, C.A., A quantitative comparison between chemical dosing and electrocoagulation, Colloids and Surfaces A: Physicochem, 2002, 211, 133-248.
Hu, C.Z., Sun, J.Q., Wang, S,Q., Liu, R.P., Liu, H.J., Qu, J.H., Enhanced efficiency in HA removal by electrocoagulation through optimizing flocs properties: Role of current density and pH, Separation and Purification Technology, 2017, 175, 248-254.
İrdemez, Ş., Demircioğlu, N., Yildiz, Y.Ş., Bingül, Z., The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes, Separation and Purification Technology, 2006, 52, 218-223.Jose, S., Mishra L., Debnath, S., Pal, S., Munda., P.K., Basu, G., Improvement of water quality of remnant from chemical retting of coconut fibre through electrocoagulation and activated carbon treatment, Journal of Cleaner Production, 2018, S0959-6526 (18), 33411-5.
Kim, T., Kim, TK., Zoh, K.D., Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes, Journal of Water Process Engineering, 2020, 33, 101109.
Koparal, A.S., Yildiz, Y. Ş., Keskinler, B., Demircioğlu, N., Effect of initial pH on the removal of humic substances from wastewater by electrocoagulation, Separation and Purification Technology, 2008, 59, 175-182.
Lai, C.L., Lin, S.H., Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication, Chemical Engineering Journal, 2003, 95, 205-211.
Liu, F.N., Zhang, G.L., Meng, Q., Zhang, H.Z., Performance of Nanofiltration and Reverse Osmosis Membranes in Metal Effluent Treatment, Chinese Journal of Chemical Engineering, 2008, 169(3), 441-445.
Li, Y.P., Xu, Z.J., Liu, S.Y., Zhang, J.W., Yang, X.N., Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes, Computational Materials Science, 2017, 139, 65-74.
Loukanov, A., Allaoui, N.E., Omor, A., Elmadani, F.Z., Bouayad, K., Nakabayashi., Results in Chemistry, Large-scale removal of colloidal contaminants from artisanal wastewater by bipolar electrocoagulation with aluminum sacrificial electrodes, 2020, S2211-7156 (20), 30016-3.
Núñez, J., Yeber, M., Cisternas, N., Thibaut, R., Medina, P., Carrasco, C., Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry, Journal of Hazardous Materials, 2019, 371, 705-711.
Mollah, M.Y.A., Parga, R.S.J.R., Cocke, D.L., Electrocoagulation (EC) — science and applications, Journal of Hazardous Materials, 2011, B84, 29-41.
Ozyonar, F., Karagozoglu, B., Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater, Journal Desalination and Water Treatment, 2014, 52, 1-3.
Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K.J., Loizidou, M., Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods, Separation and Purification Technology, 2004, 39, 181-188.
Şengil, İ.A., Ozacar, M., Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, Journal of Hazardous Materials, 2006, 137, 1197-1205.
Shu, J.C., Liu, R.L., Du, J., Tao, C.Y., Manganese recovery and ammonia nitrogen removal from simulation wastewater by pulse electrolysis, Separation and Purification Technology, 2016, 168, 107-133.
Sun, G.X., Zhang, Y., Gao, Y.X., Han, X.G., Yang, M., Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application, Water Research, 2020, 173, 115517.
Syaichurrozi, I., Sarto, S., Sediawan, W.B., Hidayat, M., Mechanistic Model of Electrocoagulation Process for Treating Vinasse Waste: Effect of Initial pH, Journal of Environmental Chemical Engineering, 2020, S2213-3437 (20), 30104-4.
Tak, B.Y., Tak, B.S., Kim, Y.J., Yoon, Y.H., Min, G.H., Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD), 2015, S1226-086X (15), 00080-5.
Terrazas, E., Vázquez, A., Briones, R., Lázaro, I., Rodríguez, I., EC treatment for reuse of tissue paper wastewater: Aspects that affect energy consumption, Journal of Hazardous Materials, 2010, 181, 809-816.
Vázquez, A., Rodríguez, I., Lázaro, I., Primary potential and current density distribution analysis: A first approach for designing electrocoagulation reactors, Chemical Engineering Journal, 2012, 179, 253-261.
Verma, A.K., Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode, Journal of Water Process Engineering, 2017, 20, 168-172.
Wang, Z.X., Xu, X.C., Yang, F.L., Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system, Journal of Hazardous Materials, 2012, 253-256, 78-84.
Wu, W., Giese, R.F., Oss C.J. van, Stability versus flocculation of particle suspensions in water—correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory, Colloids and Surfaces B: Biointerfaces, 1999, 14, 47-55.
Xu, L.Q., Huang., Q.H., Xu, X.J., Cao, G.Z., He, C.H., Wang, Y., Yang, M.P., Simultaneous removal of Zn2+ and Mn2+ ions from synthetic and real smelting wastewater using electrocoagulation process: Influence of pulse current parameters and anions, Separation and Purification Technology, 2017, 188, 316-328.
Xu, L.; Xu, X,; Cao, G.Z.; Liu, S.L.; Duan, Z.Y.; Song, S.M.; Song, M.Y.; Zhang, M.J., Optimization and assessment of Fe-electrocoagulation for the removal of potentially toxic metals from real smelting wastewater, Journal of Environmental Management, 218: 129-138, 2018.
Yilmaz, A.E., Boncukcuoglu, R., Kocakerim, M.M., A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution, Journal of Hazardous Materials, 2007, 149, 475-481.
Yuan, X.Y., Sun, H.F., Guo, D.S., The removal of COD from coking wastewater using extraction replacement – biodegradation coupling, Desalination, 2012, 289, 45-50.
吳世彥,2005,以 UV/H2O2 高級氧化程序處理 4-氯酚之研究,碩士 論文,國立臺北科技大學化學工程研究所,台北。
胡宏志,2002,鈷在活性碳纖維中的吸附與鑑定,碩士論文,國立成 功大學化學研究所,台南。
金映君,2006,檸檬酸鹽/Fe(III)、矽酸鹽/Fe(III)合成氧化鐵吸附砷之 研究,碩士論文,國立中山大學海洋環境及工程研究所,高雄。
柯宏杰,2005,以電解混凝法處理化學機械研磨廢水-影響因子及反 應機制,碩士論文,國立交通大學環境工程研究所,新竹。
李春明,2006,混凝程序去除二氧化矽之反應特性研究,碩士論文, 朝陽科技大學環境工程與管理研究所,台中。
王思婷,2019,利用田口法最佳化以複製模板法回收廢棄碳化矽合成 網狀多孔陶瓷,碩士論文,國立臺本科技大學資源工程研究所, 台北。
黃任偉,2002,粒狀氫氧化鐵吸附地下水中砷之研究,碩士論文,國 立成功大學環境工程研究所,台南。
林忠誠,2010,以磁種混凝處理鋅系電鍍廢水之研究,碩士論文,國 立高雄應用科技大學化學工程與材料工程碩士班,高雄。
陳仁慶,2002,錳離子在人工錳砂表面吸附反應之研究,碩士論文, 國立中興大學環境工程研究所,台中。
湯佩玲,利用石墨烯奈米材料吸附程序及同步電混凝/電過濾 程序去 除生活污水中關切的新興污染物,碩士論文,國立中山大學環 境工程研究所,高雄。
鄭美君,2017,合成奈米級鎢酸鉍觸媒暨過硫酸鹽高級氧化程序降解 三苯甲類染料的效率和機構探討,碩士論文,國立台中教育大 學科學應用與推廣研究所,台中。
梁宏榛,2011,以電氧化及電混凝技術進行染料 Orange II 去除之研 究,碩士論文,中華醫事科技大學生物安全衛生研究所,台南。
洪啟偉,2008,以雙反應曲面法與非線性規劃進行塑膠射出成形作業 之最佳化設計,碩士論文,東海大學工業工程與經營資訊研究 所,台中。
陳俞蓁,2002,混凝對表面水濁度去除之研究,碩士論文,國立成功 大學環境工程研究所,台南。
潘秋金,2002,以陽離子型界面活性劑合成有機黏土吸附有機化合物 之研究,碩士論文,國立成功大學資源工程研究所,台南。
吳鈴鈴,2019,以田口實驗設計萃取扁桃斑鳩菊之功效評估,碩士論 文,國立聯合大學化學工程研究所,苗栗。
蔡文慶,2002,高頻脈衝電鍍在酸性鍍銅系統之研究,博士論文,國 立清華大學化學工程研究所,新竹。
張雅傑,2014,以電混凝及電芬頓技術處理鄰苯二甲酸二甲酯溶液之 研究,碩士論文,弘光科技大學職業安全與防災研究所,台中。
張淑微,2002,以反應曲面法研究酵素合成己醇酯類之最優化,碩士 論文,大葉大學食品工程研究所,彰化。
張志豐,2004,深層培養松茸(Tricholoma matsutake) 之最適化培養液 組成,碩士論文,大同大學生物工程研究所,台北。
王儷宮,2009,電子產品電鍍廢能廢水回收效益分析:以 T 公司為例, 碩士論文,清雲科技大學國際企業管理研究所,桃園。
蔣昱新,2017,以電芬頓技術處理溶液中磺胺二甲基嘧啶之研究,碩 士論文,弘光科技大學職業安全與防災研究所,台中。
蔡輔晃,2006,反應曲面法與基底建構反應曲面法之研究,碩士論文, 國立高雄大學統計研究所,高雄。
蘇柏睿,2020,田口方法及模糊調整 PID 控制器設計應用於輪型移 動機器人循跡,碩士論文,國立金門大學電子工就所,金門。
賴進興,1995,氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,碩士論 文,國立台灣大學環境工程研究所。
蕭薀華,離子交換性水膠之分成及物性,碩士論文,國立清華大學高 分子研究所,新竹。
電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊