(3.238.7.202) 您好!臺灣時間:2021/03/04 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃奕閔
論文名稱:環境用藥於水體及植物體殘留量調查與噴藥工人健康風險評估
論文名稱(外文):The study of environmental agents residues in water and plant and health risk assessment of workers exposed to environmental agents
指導教授:黃鈺芳黃鈺芳引用關係
指導教授(外文):Yu-Fang Huang
口試委員:陳美蓮陳鑫昌
口試委員(外文):Mei-Lien ChenHsin-Chang Chen
口試日期:2020-06-24
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:145
中文關鍵詞:環境用藥環境殘留環境介質健康風險評估
外文關鍵詞:Environmental agentsEnvironmental residuesEnvironmental mediaHealth risk assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
環境用藥係指使用於環境衛生、污染防治用藥等,依其所使用之濃度及使用方式分為環境用藥原體、一般環境用藥與特殊環境用藥。由於環境用藥施用地點包括公共場所如社區、公園、學校與居家室內場所,與民眾活動範圍十分接近,造成民眾暴露機會增加,其施作安全與環境殘留成為公共衛生重要議題。研究目的包括(1)建立環境用藥於環境介質水體、植物體與個人空氣暴露前處理方法與超高效液相層析串聯式質譜儀(UHPLC-MS/MS)分析方法;(2)探討環境用藥於水體與植物體殘留量;(3)執行環境用藥噴藥工人健康風險評估。
為釐清噴藥前後水體與植物體中環境用藥殘留量與評估噴藥工人健康風險,本研究於2019年6-9月間配合內湖、北投、新莊、台南與高雄等五個地區登革熱防疫工作,採集噴藥前一天、噴藥中、噴藥後三小時、後一天與後一週的水體與植物體樣本分析。水體前處理使用HLB (hydrophilic-lipophilic balance)固相萃取膜進行萃取與淨化;植物體前處理則使用高葉綠素農藥快速萃取套組 (fast pesticide extraction-chlorophyll, FaPEx-CHL),以乙腈溶液含1%醋酸進行萃取;個人空氣樣本則以ACN做為脫附劑,超音波震盪30分鐘;尿液檢體檢測環境用藥原型物及氧化壓力生物指標。並依據個人空氣樣本數據進一步使用蒙地卡羅進行不確定性分析,計算呼吸暴露量 (ADDRE)、安全限值 (margin of safety, MOS)與危害指數 (hazard index, HI),以執行噴藥工人健康風險評估。
分別採集水體、植物體、個人空氣樣本與尿液樣本26、32、13與17件。結果顯示,水體多於噴藥後一週檢出7種環境用藥有效成份包含益達胺、安丹、協力精、陶斯松、治滅寧、第滅寧與依酚寧,但檢出與噴灑藥劑無關,可能與公園周遭有其他目的施藥有關。植物體多於噴藥時與噴藥後一天檢出7種環境用藥有效成份包含亞特松、協力精、賽洛寧、賽滅寧、亞滅寧、治滅寧與第滅寧,除治滅寧可能與當地居民使用居家環境用藥或農藥因而檢出,其餘6種檢出環境用藥皆與施用藥劑有關。
個人空氣樣本檢出8種環境用藥有效成份包含亞特松、協力精、陶斯松、賽滅寧、賽酚寧、百滅寧、治滅寧與第滅寧,檢出環境用藥皆與施用藥劑有關。北投噴藥工人尿中第滅寧原型物濃度2811.52 μg /g creatinine,其尿中8-OHdG濃度為70.42 μg /g creatinine,工人噴藥過程是否造成氧化壓力增加,未來仍需更多樣本數支持。
使用蒙地卡羅進行不確定性分析以評估噴藥工人健康風險,結果顯示MOS值皆大於100且HI小於1,表示噴藥過程僅考慮呼吸暴露途徑未達顯著風險,但仍建議噴藥工人施藥時應穿戴個人防護具,對於一般民眾應避免接近噴藥點以降低環境用藥對人體健康危害。
Environmental agents means the following types of chemical agents or microbial preparations used for environmental sanitation, and which are distinguished as technical grade environmental agents, general use environmental agents, and restricted use environmental agents. The application safety and environmental residues of environmental agents has become an important public health issue because of the vicinityto the public places such as community, parks, schools and indoor places. The objectives of this study was to (1) establish pretreatment methods for environmental agents in water, plant and personal air sample and analytical method in ultra high performance liquid chromatography tandem mass spectrometer (UHPLC-MS/MS);(2) explore the environmental residues in water and plant, and (3) perform health risk assessment for spray workers.
We collected samples of water and plant during the environmental agent application for dengue prevention in five areas including Neihu, Beitou, Tainan, Xinzhuang and Kaohsiung. In order to study environmental residues in environmental media, 5 sampling times were selected including before-, during-, 3 hours after-, 1 day after- and 1 week after- the spraying. The pretreatment methods were hydrophilic-lipophilic balance (HLB), fast pesticide extraction-chlorophyll (FaPEx-CHL) and sonication for water, plant, and personal air samples. We analyzed the parent compound of environmental agents and biomarkers of oxidative stress in urine. Moreover, we conducted health risk assessment to calculate average daily dose (ADDRE), margin of safety (MOS), and hazard index (HI) using the Monte Carlo simulation method.
We collected samples of water (n=26), plant (n=32), personal air sample (n=13), and urine (n=17). A total of 7 environmental agents ingredients were detected in water samples including imidacloprid, propoxur, piperonyl butoxide, chlorpyrifos, tetramethrin, deltamethrin, and etofenprox. However, all of the effective ingredients were not related to spraying proess. A total of 7 environmental agents ingredients were detected in plant samples including pirimiphos-methyl, piperonyl butoxide, λ- cyhalothrin, cypermethrin, α-cypermethrin, tetramethrin and deltamethrin. All of the effective ingredients were related to spraying proess, except for tetramethrin.
A total of 8 environmental agents ingredients were detected in personal air samples including pirimiphos-methyl, piperonyl butoxide, chlorpyrifos, cypermethrin, cyphenothrin, permethrin, tetramethrin, and deltamethrin. All of the effective ingredients were related to spraying proess. For workers in Beitou, the urinary level of deltamethrin was 2811.52 μg/g creatinine and 8-OHdG level was 70.42 μg/g creatinine. Further study with a larger sample size is needed to explore the association between spray process and oxidative stress.
The results of health risk assessment showed that MOS was higher than 100 and HI less than 1 indicating no potential risk for workers. We recommended that workers should wear personal protective equipment during spraying and for general population should leave away from spraying exposure.
We collected samples of water and plant during the environmental agent application for dengue prevention in five areas including Neihu, Beitou, Tainan, Xinzhuang and Kaohsiung. In order to study environmental residues in environmental media, 5 sampling times were selected including before-, during-, 3 hours after-, 1 day after- and 1 week after- the spraying. The pretreatment methods were hydrophilic-lipophilic balance (HLB), fast pesticide extraction-chlorophyll (FaPEx-CHL) and sonication for water, plant, and personal air samples. We analyzed the parent compound of environmental agents and biomarkers of oxidative stress in urine. Moreover, we conducted health risk assessment to calculate average daily dose (ADDRE), margin of safety (MOS), and hazard index (HI) using the Monte Carlo simulation method.
We collected samples of water (n=26), plant (n=32), personal air sample (n=13), and urine (n=17). A total of 7 environmental agents ingredients were detected in water samples including imidacloprid, propoxur, piperonyl butoxide, chlorpyrifos, tetramethrin, deltamethrin, and etofenprox. However, all of the effective ingredients were not related to spraying proess. A total of 7 environmental agents ingredients were detected in plant samples including pirimiphos-methyl, piperonyl butoxide, λ- cyhalothrin, cypermethrin, α-cypermethrin, tetramethrin and deltamethrin. All of the effective ingredients were related to spraying proess, except for tetramethrin.
A total of 8 environmental agents ingredients were detected in personal air samples including pirimiphos-methyl, piperonyl butoxide, chlorpyrifos, cypermethrin, cyphenothrin, permethrin, tetramethrin, and deltamethrin. All of the effective ingredients were related to spraying proess. For workers in Beitou, the urinary level of deltamethrin was 2811.52 μg/g creatinine and 8-OHdG level was 70.42 μg/g creatinine. Further study with a larger sample size is needed to explore the association between spray process and oxidative stress.
The results of health risk assessment showed that MOS was higher than 100 and HI less than 1 indicating no potential risk for workers. We recommended that workers should wear personal protective equipment during spraying and for general population should leave away from spraying exposure.
摘要 I
Abstract III
第一章 緒論 1
1.1 前言 1
1.2 環境用藥使用量及其用途資料蒐集 2
1.3 本研究使用環境用藥基本特性簡介 6
1.4 研究目標 10
第二章 文獻回顧 12
2.1 水體環境用藥前處理方法開發 12
2.2 植物體中環境殘留量濃度回顧 15
2.3 國內外空氣中環境用藥前處理與濃度研究 17
2.4 國外農藥暴露與尿液原型物研究 20
2.5 氧化壓力生物指標 22
第三章 材料與方法 28
3.1 材料 28
3.2 藥品 29
3.3 標準溶液配置 31
3.4 分析儀器 33
3.5 建立環境用藥於超高效液相層析串聯式質譜儀分析方法 33
3.6 品保/品管與樣本定量 35
3.7 水體、植物體與個人空氣樣本前處理方法開發 36
3.8 採樣規劃與實地採樣 38
3.9 尿液中肌酸酐與環境用藥原型物分析 42
3.10 尿液中氧化壓力分析 43
3.11 噴藥工人健康風險評估 45
第四章 結果與討論 48
4.1 建立UHPLC-MS/MS上機分析方法 48
4.2 環境用藥於水體中方法表現 52
4.3 環境用藥於植物體方法表現 59
4.4 建立個人空氣暴露前處理方法 66
4.5 分析方法確效總結 75
4.6 環境用藥水體實地採樣結果 76
4.6.1 噴灑藥劑 76
4.6.2 實地採樣樣本總數 77
4.6.3 噴藥工人基本特性 78
4.7 環境用藥環境殘留量採樣結果 80
4.7.1 環境用藥水體實地採樣結果 80
4.7.2 環境用藥植物體實地採樣結果 87
4.7.3 環境用藥噴藥工人個人空氣暴露結果 90
4.7.4 尿液中環境用藥原型物分析 92
4.7.5 噴藥工人尿中氧化壓力濃度結果 94
4.8 執行環境用藥噴藥工人健康風險評估 100
第五章 結論與建議 104
參考文獻 106
附 錄 116
附錄一 環境用藥之化學結構式 117
附錄二 環境用藥於標準品 100 μg/L UHPLC-MS/MS 層析圖譜 121
附錄三 環境用藥於XAD-2、水體與植物體 1 μg/L UHPLC-MS/MS 層析圖譜 125

Antonious GF, Snyder JC, Patel GA. Pyrethrins and piperonyl butoxide residues on potato leaves and in soil under field conditions. Journal of Environmental Science and Health, Part B. 2001 Apr 30;36(3):261-71.
Antonious GF. Residues and half-lives of pyrethrins on field-grown pepper and tomato. Journal of Environmental Science and Health, Part B. 2004 Jan 1;39(4):491-503.
Alegria H, Bidleman TF, Figueroa MS. Organochlorine pesticides in the ambient air of Chiapas, Mexico. Environmental Pollution. 2006 Apr 1;140(3):483-91.
Anwar WA. Biomarkers of human exposure to pesticides. Environmental Health Perspectives.1997: 801-806.
Alak G, Ucar A, Parlak V et al. Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2017 Dec 1;203:51-8.
Bossi R, Vorkamp K, Skov H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environmental Pollution. 2016 Oct 1;217:4-10.
Baraud L, Tessier D, Aaron JJ et al. A multi-residue method for characterization and determination of atmospheric pesticides measured at two French urban and rural sampling sites. Analytical and Bioanalytical Chemistry. 2003 Dec 1;377(7-8):1148-52.
Bagchi D, Bagchi M, Hassoun EA et al. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104(1-3): 129-140.
Banerjee BD, Seth V, Ahmed RS. Pesticide-induced oxidative stress: perspective and trends. Reviews on Environmental Health. 2001;16(1):1-40.
Basu S. Isoprostanes:novel bioactive products of lipid peroxidation. Free Radic Res. 2004;38(2):105-122.
Basu S. Fatty acid oxidation and isoprotanes:oxidative strain and isoprostanes:oxidative strain and oxidative stress. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):219-225.
Biberoglu E, Biberoglu K, Kirbas A et al. Circulating and myometrial markers of oxidative stress in pregnant women with fetal growth restriction. Journal of Obstetrics and Gynaecology Research. 2016; 42(1) :29-35.
Bonansea RI, Amé MV, Wunderlin DA. Determination of priority pesticides in water samples combining SPE and SPME coupled to GC–MS. A case study: Suquía River basin (Argentina). Chemosphere. 2013 Feb 1;90(6):1860-9.
Bacey J. Environmental fate of Hydramethylnon. Report for Environmental Monitoring and Pest Management Branch, California Department of Pesticide Regulation, Sacramento. 2000.
Bonmatin JM, Moineau I, Charvet R et al. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Analytical Chemistry. 2003 May 1;75(9):2027-33.
Chen M, Tao L, Lean MJ et al. Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures. Journal of Agricultural and Food Chemistry. 2014 Jul 2;62(26):6082-90.
Christen V, Mittner F, Fent K. Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environmental Science & Technology. 2016 Apr 5;50(7):4071-81.
Carmichael SL, Yang W, Roberts E et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California. Environmental Research. 2014 Nov 1;135:133-8.
Chowdhury M, Zaman A, Banik S et al. Organophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the Savar and Dhamrai Upazilas in Bangladesh. Internationa Journal of Environmental Research and Public Health. 2012 Sep;9(9):3318-29.
Ccanccapa A, Masiá A, Navarro-Ortega A et al. Pesticides in the Ebro River basin: occurrence and risk assessment. Environmental Pollution. 2016 Apr 1;211:414-24.
Coscollà C, López A, Yahyaoui A et al. Human exposure and risk assessment to airborne pesticides in a rural French community. Science of the Total Environment. 2017 Apr 15;584:856-68.
Coscollà C, Muñoz A, Borrás E et al. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area. Atmospheric Environment. 2014 Oct 1;95:29-35.
Cequier E, Sakhi AK, Haug LS et al. Exposure to organophosphorus pesticides in Norwegian mothers and their children: Diurnal variability in concentrations of their biomarkers and associations with food consumption. Science of the Total Environment. 2017 Jul 15;590:655-62.
Chang CH, Yu CJ, Du JC wt al. The interactions among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of dopamine receptor D4 increase the risk of attention deficit/hyperactivity disorder in children. Environmental Research. 2018 Jan 1;160:339-46.
Chang CH, Huang YF, Wang PW et al. Associations between prenatal exposure to bisphenol a and neonatal outcomes in a Taiwanese cohort study: Mediated through oxidative stress?. Chemosphere. 2019 Jul 1;226:290-7.
Désert M, Ravier S, Gille G et al. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d’Azur Region and Corsica, France. Atmospheric Environment. 2018 Nov 1;192:241-56.
Delescluse C, Ledirac N, Li R et al. Induction of cytochrome P450 1A1 gene expression, oxidative stress, and genotoxicity by carbaryl and thiabendazole in transfected human HepG2 and lymphoblastoid cells. Biochemical Pharmacology. 2001;61(4): 399-407.
Dalvie MA, Sosan MB, Africa A et al. Environmental monitoring of pesticide residues from farms at a neighbouring primary and pre-school in the Western Cape in South Africa. Science of the Total Environment. 2014 Jan 1;466:1078-84.
Denvir M, Gray G. Run for you lie:exercise,oxidative stress and the ageing endothelium. The Journal of Physiology. 2009;587(17):4137-4138.
Del Prado-Lu JL. Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environmental Health and Preventive Medicine. 2015 Jan 1;20(1):53-62.
Ehrich M. Organophosphates. Encyclopedia of Toxicology (Second Edition). 2004 : 308-311.
Feo ML, Eljarrat E, Barceló D. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. Journal of Chromatography A. 2010 Apr 9;1217(15):2248-53.
Farrar NJ, Harner T, Shoeib M et al. Field deployment of thin film passive air samplers for persistent organic pollutants: a study in the urban atmospheric boundary layer. Environmental Science & Technology. 2005 Jan 1;39(1):42-8.
Flessel P, Quintana PJ E, Hooper K. Genetic toxicity of malathion: a review. Environmental and Molecular Mutagenesis. 1993;22(1):7-17.
Ferguson KK, Cantonwine DE, Rivera-González LO et al. Urinary phthalate metabolite associations with biomarkers of inflammation and oxidative stress across pregnancy in Puerto Rico. Environmental Science & Technology. 2014 Jun 17;48(12):7018-25.
Ferguson KK, McElrath TF, Chen YH et al. Repeated measures of urinary oxidative stress biomarkers during pregnancy and preterm birth. American Journal of Obstetrics and Gynecology. 2015; 212(2) :208-e1.
Fernández SF, Pardo O, Cervera AI et al. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment. Science of the Total Environment. 2020 Jan 10;699:134385.
Gupta RC. Carbamate Pesticides. Encyclopedia of Toxicology (Third Edition). 2014 : 661-664.
Gouin T, Harner T, Blanchard P et al. Passive and active air samplers as complementary methods for investigating persistent organic pollutants in the Great Lakes basin. Environmental Science & Technology. 2005 Dec 1;39(23):9115-22.
Gallart-Mateu D, Armenta S, de la Guardia M. Indoor and outdoor determination of pesticides in air by ion mobility spectrometry. Talanta. 2016 Dec 1;161:632-9.
Gubory Al, Kaïs H. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reproductive BioMedicine Online. 2014; 29.1:17-31.
Guo L, Lee HK. Low-density solvent based ultrasound-assisted emulsification microextraction and on-column derivatization combined with gas chromatography–mass spectrometry for the determination of carbamate pesticides in environmental water samples. Journal of Chromatography A. 2012 Apr 27;1235:1-9.
Guardino X, Obiols J, Rosell MG et al. Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen–phosphorus detection, high-performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A. 1998 Oct 9;823(1-2):91-6.
Gupta RC. Carbamate Pesticides . Encyclopedia of Toxicology (Third Edition). 2014 :661-664.
Hollingshaus JG. Inhibition of mitochondrial electron transport by hydramethylnon: a new amidinohydrazone insecticide. Pesticide Biochemistry and Physiology. 1987 Jan 1;27(1):61-70.
He LM, Troiano J, Wang A et al. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. InReviews of Environmental Contamination and Toxicology 2008 :71-91.
Hu L, Wang H, Qian H et al. Centrifuge-less dispersive liquid-liquid microextraction base on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid insecticides in water samples. Journal of Chromatography A. 2016 Nov 11;1472:1-9.
Hua K, Hong M, Xiaolin H et al. Simultaneous determination of 16 pyrethroid residues in tea samples using gas chromatography and ion trap mass spectrometry. Journal of Chromatographic Science. 2010 Oct 1;48(9):771-6.
Hung CC, Simaremare SR, Hsieh CJ et al. Simultaneous determination of pyrethroid, organophosphate and carbamate metabolites in human urine by gas chromatography–mass spectrometry (GCMS). Applied Sciences. 2019 Jan;9(5):879.
Halliwell B. Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radical Biology and Medicine. 2002;32(10):968-974.
Harada KH, Tanaka K, Sakamoto H et al. Biological monitoring of human exposure to neonicotinoids using urine samples, and neonicotinoid excretion kinetics. Plos One. 2016;11(1).
Huang PC, Waits A, Chen HC et al. Mediating role of oxidative/nitrosative stress biomarkers in the associations between phthalate exposure and thyroid function in Taiwanese adults. Environment International. 2020 Jul 1;140:105751.
Iturburu FG, Bertrand L, Mendieta JR et al. An integrated biomarker response study explains more than the sum of the parts: oxidative stress in the fish Australoheros facetus exposed to imidacloprid. Ecological Indicators. 2018 Oct 1;93:351-7.
Juraske R, Castells F, Vijay A et al. Uptake and persistence of pesticides in plants: measurements and model estimates for imidacloprid after foliar and soil application. Journal of Hazardous Materials. 2009 Jun 15;165(1-3):683-9.
Jaffe, M. Ueber den Niederschlag, welchen PikrinsaUre in normalen Ham erzeugt und uber eme neue Reaktion des Kreati-ninis. Hoppe Seylers Z Physiol Chem. 1996
Kang S, Kim S, Park J et al. Urinary paraben concentrations among pregnant women and their matching newborn infants of Korea, and the association with oxidative stress biomarkers. Science of the Total Environment. 2013 Sep 1;461:214-21.
Kawahara J, Horikoshi R, Yamaguchi T et al. Air pollution and young children's inhalation exposure to organophosphorus pesticide in an agricultural community in Japan. Environment International. 2005 Oct 1;31(8):1123-32.
Kadiiska MB, Gladen BC, Baird DD et al. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radical Biology and Medicine. 2005;38(6):698-710.
Korkmaz A, Aydogan M, Kolankaya D et al. Vitamin C coadministration augments bisphenol A,nonylphenol and octylphenol induced oxidative damage on kidnet of rats. Environmental Toxicology. 2011;26(4):325-337.
Kuiper HC, Bruno RS, Traber MG et al. Vitamin C supplementation lowers urinary levels of 4-hydroperoxy-2-nonenal metabolites in humans. Free Radic Biol Med. 2011;50(7) :848-853.
Keil AP, Daniels JL, Hertz PI. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: the CHARGE (CHildhood Autism Risks from Genetics and Environment) case–control study. Environmental Health. 2014 Dec;13(1):3.
Li H, Lydy MJ, You J. Pyrethroids in indoor air during application of various mosquito repellents: Occurrence, dissipation and potential exposure risk. Chemosphere. 2016 Feb 1;144:2427-35.
Li AJ, Moral MMP, Kannan K. Variability in urinary neonicotinoid concentrations in single-spot and first-morning void and its association with oxidative stress markers. Environment International. 2020 Feb 1;135:105415.
Lieberman AD, Craven MR, Lewis HA et al. Genotoxicity from domestic use of organophosphate pesticides. Journal of Occupational and Environmental Medicine. 1998;40(11):954-957.
Li H, Ma H, Lydy MJ et al. Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and pyrethroid pesticides in an urban community in South China. Chemosphere. 2014 Jan 1;95:363-9.
Li MJ, Zhang JB, Li WL et al. Capillary electrophoretic determination of DNA damage markers: Content of 8-hydroxy-2′-deoxyguanosine and 8-nitroguanine in urine. Journal of Chromatography B. 2011 Dec 15;879(32):3818-22.
Lodovici M, Casalini C, Briani C et al.Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology. 1997;117(1):55-60.
Ling MP, Hsiao HA, Chen SC et al. Assessing dietary exposure risk to neonicotinoid residues among preschool children in regions of Taiwan. Environmental Science and Pollution Research. 2020 Jan 27:1-0.
Lebailly P, Vigreux C, Lechevrel C et al. DNA damage in mononuclear leukocytes of farmers measured using the alkaline comet assay: discussion of critical parameters and evaluation of seasonal variations in relation to pesticide exposure. Cancer Epidemiology and Prevention Biomarkers. 1998;7(10):917-927.
Liu C, Wang YX, Chen YJ et al. Blood and urinary biomarkers of prenatal exposure to disinfection byproducts and oxidative stress: A repeated measurement analysis. Environment International. 2020 Apr 1;137:105518.
Lu Q, Sun Y, Ares I et al. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research. 2019 Mar 1;170:260-81.
Khemiri R, Côté J, Fetoui H et al. Kinetic time courses of lambda-cyhalothrin metabolites after dermal application of Matador EC 120 in volunteers. Toxicology Letters. 2018 Oct 15;296:132-8.
Mukdasai S, Thomas C, Srijaranai S. Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples. Talanta. 2014 Mar 1;120:289-96.
Ma Z, Zheng T, Zhang YQ.Behavioral impairment and oxidative damage induced by chronic application of nonylphenol. Int J Mol Sci. 2006;12(1):114-127.
Martinez MP, Kannan K. Simultaneous analysis of seven biomarkers of oxidative damage to lipids, proteins, and DNA in urine. Environmental Science & Technology. 2018 Apr 30;52(11):6647-55.
Muniz JF, Cauley ML, Scherer J et al. Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicology and Applied Pharmacology. 2008 Feb 15;227(1):97-107.
Morissette MC, Murray N, Turmel J et al. Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. European Journal of Sport Science. 2016;16(5) :569-576.
Moretto A. Pesticide Residues: Organophosphates and Carbamates. Encyclopedia of Food Safety. 2014: 19-22.
Maples. Piperonyl Butoxide. Encyclopedia of Toxicology (Third Edition). 2014 :958-959.
Machemer L, Eben A, Kimmerle G. Monitoring of propoxur exposure. InStudies in Environmental Science. 1982 :255-262.
NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, NIOSH PYRETHRUM 5008.
NIOSH Manual of Analytical Methods (NMAM), Fourth Edition. Page 2. ORGANOPHOSPHORUS PESTICIDES: METHOD 5600.
Nag M, Nandi N. In vitro andin vivo effect of organophosphate pesticides on monoamine oxidase activity in rat brain. Bioscience Reports. 1987;7(10):801-803.
Nuñez SI, Herreros MA, Encinas T et al. Estimated daily intake of pesticides and xenoestrogenic exposure by fruit consumption in the female population from a Mediterranean country (Spain). Food Control. 2010 Apr 1;21(4):471-7.
Osaka A, Ueyama J, Kondo T et al. Exposure characterization of three major insecticide lines in urine of young children in Japan—neonicotinoids, organophosphates, and pyrethroids. Environmental Research. 2016 May 1;147:89-96.
Ogino K, Wang DH. Biomarkers of oxidative/nitrosative stress:an approach to disease prevention. Acta Med Okayama. 2007;61(4):181-189.
Olsson AO, Nguyen JV, Sadowski MA et al. A liquid chromatography/electrospray ionization–tandem mass spectrometry method for quantification of specific organophosphorus pesticide biomarkers in human urine. Analytical and Bioanalytical Chemistry. 2003 Jul 1;376(6):808-15.
Peluso M, Merlo F, Munnia A et al. P-postlabeling detection of DNA adducts in peripheral white blood cells of greenhouse floriculturists from western Liguria, Italy. Cancer Epidemiology and Prevention Biomarkers. 1996;5(5):361-369.
Piner P, Üner N. Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environmental Toxicology and Pharmacology. 2012 May 1;33(3):414-20.
Palm M, Axelsson LO, Wernroth et al. F2-Isoprostanes, tocopherols and normal pregnancy. Free Radical Research. 2009;43(6):546-552.
Qare AA. Donia MA. Increased 8-hydroxy-2′-deoxyguanosine, a biomarker of oxidative DNA damage in rat urine following a single dermal dose of DEET (N, N-diethyl-m-toluamide), and permethrin, alone and in combination. Toxicology Letters. 2000;117(3) :151-160.
Qi S, Wang D, Zhu L et al. Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna. Ecotoxicology and Environmental Safety. 2018 Feb 1;148:352-8.
Raina R, Sun L. Trace level determination of selected organophosphorus pesticides and their degradation products in environmental air samples by liquid chromatography-positive ion electrospray tandem mass spectrometry. Journal of Environmental Science and Health Part B. 2008 May 1;43(4):323-32.
Rashid CS, Bansal A, Simmons RA. Oxidative Stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology. 2018;33(5) :348-359.
Rahman I, Biswas SK. Non-invasive biomarkers of oxidative stress: reproducibility and methodological issues. Redox Report. 2004;9(3):125-143.
Reilly MP, Delanty N, Roy L et al. Increased formation of the isoprostanes IPF2alpha in acute coronart angioplasty:evidence for oxidant stress during coronary reperfusion in humans. Circulation. 1997;96(10):3314-3320.
Ray DE, Burr SA. Pyrethrins/Pyrethroids. Encyclopedia of Toxicology (Third Edition). 2014:661-664.
Reed NR, Lim LO. Organophosphate Insecticides: Neurodevelopmental Effects. Encyclopedia of Environmental Health. 2011:283-290.
Seifert J,.Burr SA. Neonicotinoids. Encyclopedia of Toxicology (Third Edition). 2014:477-482.
Starner K, Goh KS. Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bulletin of Environmental Contamination and Toxicology. 2012 Mar 1;88(3):316-21.
Sheets LP, Li AA, Minnema DJ et al. A critical review of neonicotinoid insecticides for developmental neurotoxicity. Critical Reviews in Toxicology. 2016 Feb 7;46(2):153-90.
Sato S, Mizuno Y, Hattori N. Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology. 2004;64(6):1081-1083.
Shimoi K, Kasai H, Yokota N et al. Comparison between high-performance liquid chromatography and enzyme-linked immunosorbent assay for the determination of 8-hydroxy-2′-deoxyguanosine in human urine. Cancer Epidemiology and Prevention Biomarkers. 2002 Aug 1;11(8):767-70.
Shah RG, Lagueux J, Kapur S et al. Determination of genotoxicity of the metabolites of the pesticides Guthion, Sencor, Lorox, Reglone, Daconil and Admire by 32P-postlabeling. Molecular and Cellular Biochemistry. 1997;169(1-2):177-184.
Schaafsma A, Limay-Rios V, Baute T et al. Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario. Plos One. 2015;10(2).
Shamsipur M, Yazdanfar N, Ghambarian M. Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chemistry. 2016 Aug 1;204:289-97.
Schwanz TG, Carpilovsky CK, Weis GC et al. Validation of a multi-residue method and estimation of measurement uncertainty of pesticides in drinking water using gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A. 2019 Jan 25;1585:10-8.
Seccia S, Fidente P, Barbini DA et al. Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Analytica Chimica Acta. 2005 Nov 30;553(1-2):21-6.
Tao Y, Dong F, Xu J et al. Characteristics of neonicotinoid imidacloprid in urine following exposure of humans to orchards in China. Environment International. 2019 Nov 1;132:105079.
Topal A, Alak G, Ozkaraca M et al. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere. 2017 May 1;175:186-91.
Tope AM, Panemangalore M. Assessment of oxidative stress due to exposure to pesticides in plasma and urine of traditional limited-resource farm workers: formation of the DNA-adduct 8-hydroxy-2-deoxy-guanosine (8-OHdG). Journal of Environmental Science and Health Part B. 2007 Apr 1;42(2):151-5.
Tang W, Wang D, Wang J et al. Pyrethroid pesticide residues in the global environment: an overview. Chemosphere. 2018 Jan 1;191:990-1007.
TOXNET: https://www.nlm.nih.gov/toxnet/index.html
Tang W, Wang D, Wang J et al. Pyrethroid pesticide residues in the global environment: an overview. Chemosphere. 2018 Jan 1;191:990-1007.
U.S. Department of Labor Occupational Safety & Health Administration (OSHA) method 63.
U.S. Department of Labor Occupational Safety & Health Administration (OSHA) method 70. https://www.osha.gov/dts/sltc/methods/organic/org070/org070.html.
U.S. Department of Labor Occupational Safety & Health Administration (OSHA) method pv2110. https://www.osha.gov/dts/sltc/methods/partial/pv2110/pv2110.html.
Vieira CE, Pérez MR, Acayaba RD et al. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere. 2018 Mar 1;195:125-34.
Vardavas AI, Fragkiadaki P, Alegakis AK et al. Downgrading the systemic condition of rabbits after long term exposure to cypermethrin and piperonyl butoxide. Life Sciences. 2016 Jan 15;145:114-20.
Watkins DJ, Ferguson KK, Del Toro LV et al. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. International Journal of Hygiene and Environmental Health. 2015 Mar 1;218(2):212-9.
Wongsa N, Burakham R. A simple solid-phase extraction coupled to high-performance liquid chromatography–UV detection for quantification of pyrethroid residues in fruits and vegetables. Food Analytical Methods. 2012 Aug 1;5(4):849-55.
Wu C, Chen ST, Peng KH et al. Concurrent quantification of multiple biomarkers indicative of oxidative stress status using liquid chromatography-tandem mass spectrometry. Analytical biochemistry. 2016 Nov 1;512:26-35.
Wang J, Wang J, Wang G et al. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere. 2016 Feb 1;144:510-7.
Weston DP, Holmes RW, Lydy MJ. Residential runoff as a source of pyrethroid pesticides to urban creeks. Environmental Pollution. 2009 Jan 1;157(1):287-94.
Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction . Biomolecules. 2015;5(2):472-484.
Wang X, Martínez MA, Dai M et al. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environmental Research. 2016 Aug 1;149:86-104.
Wang A, Mahai G, Wan Y et al. Assessment of imidacloprid related exposure using imidacloprid-olefin and desnitro-imidacloprid: Neonicotinoid insecticides in human urine in Wuhan, China. Environment International. 2020 Aug 1;141:105785.
Román SI, Alonso ML, Bartolomé L et al. Hollow fibre-based liquid-phase microextraction technique combined with gas chromatography–mass spectrometry for the determination of pyrethroid insecticides in water samples. Talanta. 2012 Oct 15;100:246-53.
Yoshida T. Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry. Journal of Chromatography A. 2009 Jun 26;1216(26):5069-76.
Yang WL, Sun AY. Paraquat-induced free radical reaction in mouse brain microsomes. Neurochemical Research. 1998;23(1):47-53.
Yermilov V, Rubio J, Becchi M et al. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995;16(9):2045-2050.
Yang W, Carmichael SL, Roberts EM et al. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California. American Journal of Epidemiology. 2014 Mar 15;179(6):740-8.
Zhang Q, Wang X, Li Z et al. Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography–tandem mass spectrometry. Environmental Pollution. 2018 Sep 1;240:647-52.
Zaidon SZ, Ho YB, Hamsan H et al. Improved QuEChERS and solid phase extraction for multi-residue analysis of pesticides in paddy soil and water using ultra-high performance liquid chromatography tandem mass spectrometry. Microchemical Journal. 2019 Mar 1;145:614-21.
初建、林美珠、黃貞華、林浩潭。雲林地區水田灌溉水系水中農藥殘留監測。 植物保護學會會刊,2007,49:245-257。
高穗生、曾經洲、洪巧珍、蔡勇勝、謝奉家。行政院農業委員會農業藥物毒物試驗所,生物農藥簡介,作物診斷與農藥安全使用手冊:46-60。
陳美蓮、李聯雄、林志鴻。栽植作物有機磷農藥噴灑作業暴露評估研究。行政院勞工委員會勞工安全衛生研究所,2014。
黃靖文。微波輔助頂空溫控固相微萃取技術結合氣相層析質譜儀檢測水樣品中合成除蟲菊酯類農藥殘留之研究。碩士論文,國立高雄師範大學化學系,2012。
黃德昌、楊秀珠。農藥種類與特性。農業藥物毒物試驗所。
行政院農業委員會動植物防疫檢疫局。https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=15.
環境檢驗所。NIEA W603.50。水中殘留農藥檢測方法-液相層析/串聯式質譜儀法。
環境檢驗所。NIEA W656.52。水中有機磷農藥分析方法-固相萃取/氣相層析儀/火焰光度偵測器或氮、磷偵測器法。
石東生,周瑞淑,陳成裕,李宏萍。作業環境有害物暴露調查與對策技術資料(四)-有機磷劑農藥暨有機溶劑(農藥製造業)。勞動部職業安全衛生研究所,2001-12.
李宏萍、翁愫慎、林秋華、陳成裕、李國欽。空氣中五種除蟲菊類及魚藤精農藥同時分析方法研究。勞工安全衛生研究季刊,2004,12(1):1-10。
徐爾烈。居家環境殺蟲劑之殘留調查及風險評估。行政院環境保護署九十一年度科技計畫,2002。
張鳳祥。農業地區學童之有機磷農藥呼吸暴露評估。慈惠醫護管理專科學校教師研究計畫成果報告,2006。
馮鈞政。有機磷農藥暴露與兒童注意力缺陷過動症之相關性研究。碩士論文,國立陽明大學環境與職業衛生研究所,2010。
國立台灣大學公共衛生學院健康風險及政策評估中心。台灣一般民眾暴露參數彙編。研究計畫,2008。
台灣一般民眾暴露參數彙編:
https://docsplayer.com/26101974-%E5%8F%B0%E7%81%A3%E4%B8%80%E8%88%AC%E6%B0%91%E7%9C%BE%E6%9A%B4%E9%9C%B2%E5%8F%83%E6%95%B8%E5%BD%99%E7%B7%A8.html.
安全資料表
百滅寧:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P026_2016_v1.pdf.
亞滅寧:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P089_2016_v1.pdf.
賽洛寧:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P373_2016_v1.pdf.
陶斯松:http://ghs.baphiq.gov.tw/images/upload/msds/GHS_SDS_P007_2013v2.pdf
撲滅松:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P101_2016_v1.pdf.
亞特松:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P355_2016_v1.pdf.
馬拉松:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P018_2016_v1.pdf.
安丹:http://ghs.baphiq.gov.tw/images/upload/msds/GHS_SDS_P106_2013v2.pdf.
協力精:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P365_2016_v1.pdf.
第滅寧: http://www.chia-tai.com.tw/MSDS/76.pdf.
賽滅寧:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P401_2016_v1.pdf.
亞培松:http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P152_2016_v1.pdf.
芬化利: http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P016_2016_v1.pdf.
畢芬寧: http://ghs.baphiq.gov.tw/images/upload/msds/SDS_P041_2016_v1.pdf.
環境用藥許可證及病媒防治業網路查詢系統: https://mdc.epa.gov.tw/PublicInfo/
衛生福利部食品及藥物管理署: https://www.fda.gov.tw/TC/index.aspx.
美國國家衛生研究院: https://www.nih.gov/
陳錦生。合成除蟲菊類殺蟲劑-環境衛生用藥之新趨勢。臺灣環境衛生24:26-31。1992。
黃彥勳。毒餌對棕帶蟑螂之防治效能。國立中興大學生命科學院碩士論文。2012。
陳俊宇。養護及安養機構蟑螂之監測及綜合防治之研究。國立高雄大學運動健康與休閒學系碩士論文。2010。
行政院農業委員會動植物防疫檢疫局: https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=15.
環境用藥簡介及管理: https://www.tcsb.gov.tw/fp-107-360-14bbe-1.html.
環保署毒物及化學物質局: https://www.tcsb.gov.tw/mp-1.html.
美國國家衛生研究院: https://www.nih.gov/
電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔