跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張峻偉
研究生(外文):CHANG, CHUN-WEI
論文名稱:以週期結構提升磷化銦鎵/砷化鎵/鍺太陽電池之效能
論文名稱(外文):Improving the efficiency of GaInP / GaAs / Ge solar cells with periodic structure
指導教授:雷伯薰
指導教授(外文):LEI, PO-HSUN
口試委員:謝振榆雷伯薰楊奇達葉旻彥
口試委員(外文):XIE, ZHEN-YULEI, PO-HSUNYANG, QI-DAYE, MIN-YAN
口試日期:2020-06-30
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:55
中文關鍵詞:太陽能電池
外文關鍵詞:Solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究改變抗反射層厚度及太陽能電池的週期性結構對效能的影響,首先使用R-soft軟體模擬太陽能電池的構造,得到最佳參數,接著分析不同抗反射厚度對磷化銦鎵/砷化鎵/鍺太陽電池效能的影響。
將此光子週期結構磷化鋁銦導入太陽能電池中,利用聚苯乙烯奈米球作為圖形層,再以蝕刻之二氧化矽作為遮罩層蝕刻磷化鋁銦形成光子晶體結構。分析不同厚度的磷化鋁銦分別為30nm、5nm、0nm與太陽電效能之關係,並與R-soft分析結果進行比較,完成最佳化太陽電池製作與相關分析。

In this paper, the influence of thickness of antireflection layer and periodic structure of solar cells on the performance is studied. Firstly, the structure of solar cells is simulated by r-soft software to obtain the optimal parameters. Then, the effect of different antireflection thickness on the performance of GaInP / GaAs / Ge solar cells is analyzed.

The photonic periodic structure of InP was introduced into solar cells, and the PS nanospheres were used as the pattern layer, and then the etched SiO2 was used as the mask layer to etch the InP to form a photonic crystal structure. The relationship between the solar power efficiency and the thickness of InP 30nm, 5nm, 0nm was analyzed, and the results were compared with the r-soft analysis results to complete the optimization of solar cell production and correlation analysis.


摘要... i
英文摘要........ ii
誌謝........... iii
目錄........... iv
表目錄......... vi
圖目錄......... vii
第一章序論...... 1
1-1太陽能電池................2
1-1.1 非晶矽太陽電池. .......2
1-1.2 多晶矽太陽電池.........2
1-1.3 單晶矽太陽電池......... 3
1-1.4 砷化鎵太陽電池......... 3
1-1.5 磷化銦太陽電池......3
1-1.6 薄膜太陽電池.......... 4
1-2光子晶體... 5
1-3光子晶體製備....... 6
第二章 太陽電池基本理論.......... 8
2-1 太陽能電池光吸收反應機制.... 8
2-2 太陽輻射.......... 10
2-3 太陽電池基本結構... 11
2-4 太陽電池工作原理... 12
2-5 太陽電池之電流特性......... 15
2-5.1光電流......... 18
2-5.2暗電流......... 19
2-6 太陽電池轉換效率... 21
2-7 溫度效應.......... 23
2-8 波動光學-電磁光學模擬套件Rsoft ....25
第三章 實驗方法與步驟.... 27
3-1 磷化銦鎵/砷化鎵/鍺多接面太陽能電池... 27
3-2 磷化銦鎵/砷化鎵/鍺多接面太陽能電池製成....... 29
3-2.1 改變SiO2厚度.......... 29
3-2.2 改變光子晶體結構....... 31
3-3 實驗系統介紹...... 33
3-3.1 電漿化學氣象沉積系統... 33
3-3.2 旋轉塗佈系統......34
3-3.3反應式離子蝕刻機........ 34
3-3.4感應耦合式電漿離子蝕刻系統....... 35
第四章 實驗結果與討論.... 36
4-1 光子晶體結構...... 36
4-2 反應式離子蝕刻機(RIE)蝕刻.......... 37
4-3感應耦合式電漿離子蝕刻系統(ICP)蝕刻.......... 39
4-4 變化抗反射層厚度太陽能電池.......... 41
4-5 光子晶體結構太陽能電池..... 46
第五章 結論............. 50
參考文獻........51
Extended Abstract..... 53



[1] 工業技術研究院,”全額補助太陽光電系統設計施工規範研討資料”,2004
[2] J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films. 2004; 451-452: pp. 518-524.
[3] O Shultz, SW Glunz, J.C ,Goldschmidt, Lautenschlager H, Leimenstoll A, Scheiderlochner E, and Willeke GP, “Thermal oxidation processes for high-efficiency multicrystalline silicon solar cells,” 19th European Photovoltaic Solar Energy Conference, Paris, June, 2004.
[4] J,Zhao, A,Wang, and M. A,Green, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters. 1998; 73: pp. 1991-1993.
[5] Venkatasubramanian R, O’Quinn BC, J.S Hills, P.R ,Sharps, M.L ,Timmons, J.A. Hutchby, Field H, Ahrenjiel A, Keyes B, “18.2% (AM 1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge Substrate,” Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washingtion, May 1997; pp. 31-36.
[6] P.R ,Gale, R.W .McClelland, D.B ,Dingle, J.V ,Cormley, R.M Burgess, N.P Kim, MickelsenRA, B.F Stanbery, “High-Efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandemsolar cells,” Conference Record, 21stIEEE Photovoltaic Specialists Conference,Kissimimee, May 1990; pp. 53-57.
[7] C.J ,Keavney, V.E, Haven, S.M ,Vernon, “Emitter structures in MOCVD InP solar cells,” Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May, 1990; pp. 141-144.
[8] A ,Miguel.,K,Contreras Ramanathan, J, AbuShama, F. Hasoon, D. L. Young, B.Egaas, and R. Nonfi, “Diode Characteristics in State-of-the-artZno/CdS/Cu(In1-xGax)Se2 Solar Cells, “ Progress in Photovoltaics: Research and Applications, 2005; 13: pp. 209-216.
[9] X, Wu, J.C Keane, RG Dhere, C DeHart, A Duda, T,A Gessert, S Asher, DH Levi, P. Sheldon “16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell,” Conference Proceedings, 17thEuropean Photovoltaic Solar Energy Conference, Munich. October 2001; 22-26: pp. 955-1000.
[10] http://scitechvista.most.gov.tw/zh-tw/Feature/C/0/1/10/1/27.htm
[11] http://cn.hdscreen.me/wallpaper/3001795- %E5%AD%94%E9%9B%80%E7%BE%BD%E6%AF%9B%E5%AD%94%E9%9B%80
[12] http://www.epochtimes.com/b5/8/10/26/n2309483.htm
[13] 薒進譯, “高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊, 廿七卷五期, 2005 年10 月。
[14] K. Nishioka et al. “Annual Output Estimation of Concentrator PhotovoltaicSystems using High-Efficiency InGaP/InGaAs/Ge Triple Junction Solar Cells Based on Experimetal Solar Cell’s Characteristics and Field-Test Meteorological Data,” Solar Energy Materials and Solar Cells, 90 p. 57 (2006).
[15] M, Green, Solar Cells: Operating Principles, Technology, and System Applications, Chap. 5, Prentice Hall, Englewood Cliffs, NJ, 85–102 (2006).
[16] http://www.ndl.org.tw/docs/publication/22_1/pdf/E1.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top