(3.235.11.178) 您好!臺灣時間:2021/02/26 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何孟謙
研究生(外文):HO, MENG-CHIEN
論文名稱:量子點有機發光二極體之研究
論文名稱(外文):The study of Organic Light Emitting Diodes with Quantum Dots
指導教授:莊賦祥莊賦祥引用關係謝振榆謝振榆引用關係
指導教授(外文):JUANG, FUH-SHYANGSHIEH, JEN-YU
口試委員:蘇水祥葉佩勳謝振榆莊賦祥
口試委員(外文):SU, SHUI-SHYANGYE, PEI-XUNSHIEH, JEN-YUJUANG, FUH-SHYANG
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:41
中文關鍵詞:載子平衡量子點有機發光二極體電子傳輸層
外文關鍵詞:charge balancequantum dots organic light-emitting diodeselectron transport layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文以量子點作為發光材料,搭配共軛高分子材料作為電洞注入層,並分別由不同有機小分子材料TPBi與BCP以及無機電子傳輸材料ZnO分別作為電子傳輸層材料製作量子點有機發光二極體。藉由固定純電洞元件參數調整純電子元件之電子傳輸層厚度達載子平衡後得最佳電子傳輸層厚度為30-40 nm間,並由PH-1000與AI-4083不同款之PEDOT:PSS所構成之元件量子點有機發光二極體其元件亮度可達834.5 cd/m2,並依照此參數轉移至紅光量子點有機發光二極體元件上。
將不同條件之電子傳輸層所構成之元件如厚度為33 nm,電子遷移率分別為6.5 x10-5 cm2V-1S-1之TPBi電流密度、亮度及效率在8 V工作電壓下分別為22.92 mA/cm2、347.2 cd/m2與1.514 cd/A,而由電子遷移率為1.1x10-3 cm2V-1S-1,且厚度分別為33 nm 及55 nm之BCP小分子有機材料所構成之紅光量子點有機發光二極體在相同驅動電壓下其電流密度、亮度與效率分別為95.8 mA/cm2、419.4cd/m2與0.437 cd/A及75.13 mA/cm2、423cd/m2與0.562cd/A。此外由電子遷移率為1.8 x10-3 cm2V-1S-1之ZnO無機電子傳輸層其塗布一層約55 nm與兩層約110 nm之電流密度、亮度及效率在8 V工作電壓下依序為142.07 mA/cm2、338 cd/m2與0.23 cd/A及93.67 mA/cm2、300.5 cd/m2與0.32 cd/A,且最高亮度於工作電壓為9V時達628 cd/m2,因此推測最佳可達載子平衡之厚度約介於55至110 nm之間。
藉由摻入Mg之ZnO,MgZnO具有比ZnO更好的結晶度,因此減輕了氧空位引起的缺陷。由於MgZnO較低的電子遷移率和氧缺陷,MgZnO被用作QD-OLED中的電子傳輸層。並且與ZnO相比,電流密度從142.07 mA / cm2降低至114.02 mA / cm2。

In this thesis, the 10 mm2 quantum dots light-emitting diodes (QD-OLED) are fabricated with conjugated polymer materials as both hole injection layer and hole transport layer, and quantum dots for emitting layer. In order to realize charge balance of QD-OLED with TPBi as electron transport material, the charge balance of electron layer was determined with 30-40 nm in hole only device condition. Then the luminance of green QD-OLED with different PEDOT:PSS, AI-4083 and PH-1000 were 25.02 cd/m2 and 834.5 cd/m2 respectively.
BCP, the electron transport material with higher mobility 1.1x10-3 cm2V-1S-1 demonstrated higher current density and luminance than same thickness of TPBi, the current density and luminance of BCP were 95.8 mA/cm2 and 419.4 cd/m2 than which TPBi yields 22.92 mA/cm2 and 347.2 cd/m2 in homogenous conditions.
The inorganic material ZnO retains higher mobility 1.8 x10-3 cm2V-1S-1 and stability at moisture than small-molecule organic materials. However, the charge balance of inorganic charge transport layer is an big issue of hybrid structure QD-OLED, finally the best thickness was processed by spin-coated twice times of ZnO with 3000 rpm for 30 sec (55-110 nm), and the maximum luminance was 628 cd/m2.
By doping Mg with ZnO, MgZnO possess better crystallinity than ZnO to ease the defect caused by oxygen vacancy. Herein, MgZnO was used as electron transport layer in QD-OLED, due to lower electron mobility and oxygen vacancy. Finally, by applying MgZnO as electron transport layer, the current density was cut down from 142.07 mA/cm2 to 114.02 mA/cm2 compare to ZnO.

摘要.....i
ABSTRACT.....ii
誌謝.....iii
目錄......iv
表目錄......vi
圖目錄......vii
第一章、緒論.....1
1.1量子點發光二極體簡介......1
1.2研究動機.....2
第二章、量子點有機發光二極體原理及文獻探討.....3
2.1量子點.....3
2.1.1量子點發光機制.....3
2.1.2電致發光QD-LED結構類型.....4
2.1.3量子點電致發光機制.....5
2.1.4 有機發光二極體各層結構介紹......6
第三章、實驗方法與步驟......8
3.1陰極與陽極圖形製備......8
3.2元件製造流程.....10
3.3元件材料之選用.....11
3.4元件特性量測.....12
第四章、結果與討論......13
4.1量子點有機發光二極體之光電特性研究......13
4.1.1電洞元件與電子元件之光電特性比較......13
4.1.2 AI4083之PEDOT:PSS與PH1000之PEDOT:PSS元件比較......17
4.1.3使用BCP高電子遷移率有機材料提升光電特性......20
4.2導入無機材料提升發光效率.....25
4.2.1 ZnO電子傳輸層厚度之影響.....25
4.2.2 MgZnO與ZnO之光電特性比較.....29
第五章、結論與未來工作......32
參考文獻......36
EXTENDED ABSTRACT.....38

[1] Yasuhiro Shirasaki, Geoffery J. Supran, Moungi G. Bawendi and Vladimir Bulovic, 2012, “Emergence of colloidal quantum-dot light-emitting technologies”, Nature photonics, vol. 7, pp. 13-23
[2] Sergey Dayneko, Dmitriy Lypenko, Pavel LInlov, Nataliya Sannikova, Pavel Samokhvalov, Vladimir Nikitenko and Alexander Chistyakov, 2016, “Application of CdSe/ZnS/CdS/ZnS core-multishell quantum dots to modern OLED technology”, Materialstoday: Proceedings, vol. 3, Issue 2, pp. 211-215.
[3] Luhua Lan, Benchang Liu, Hong Tao Jianhua Zou,b,Congbiao Jiang, Miao Xu, Lei Wang, Junbiao Peng, and Yong Cao, 2019, “Efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye”, Journal of Materials Chemistry C, vol. 7, pp. 5755-5763.
[4] Jong Hum Yu, Su Been Heo, Minju Kim, Yeonjin Yi, and Seong Jun Kang, 2019, “Double-layer structured hole injection layer to enhance quantum-dot light-emitting diodes ”, Thin Solid Films, vol. 687, No 137444.
[5] Lei Qian, Ying Zheng, Kaushik R. Choudhury, Devasis Bera, Franky So, Jiangeng Xue, and Paul H. Holloway, 2010, “Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages”, Nano Today, vol 5, pp. 384-389.
[6] Lei Qian, Ying Zheng, Jiangeng Xue and Paul H. Holloway, 2011, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures”, Nature Photonics, vol. 5, pp. 543-548.
[7] Yizhe Sun, Yibin Jiang, Huiren Peng, Jiangliu Wei, Shengdong Zhang and Shuming Chen, 2017, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer”, Nanoscale, vol. 9, pp. 8962-8969.
[8] Qianqian Huang, Giangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei, 14 Nov 2016, ”High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering”, Optics Express, vol. 24, No 23.
[9] Ki-Heon, Jeong Hoon Lee, Woo-Seuk Song, Heejoo Koo, Changho Lee, Jong-Hyuk Lee, and Heesun Yang, 2013, “Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices”, vol. 7, pp. 7295-7302.
[10] Young Joon Han, Kunsik An, Kyung Tae Kang, Byeong-Kwon Ju and Kwan Hyun Cho, 2019, “Optical and Electrical Analysis of Annealing Temperature of High-Molecular Weight Hole Transport layer for Quantum-dot Light-emitting Diodes”, SCIENTIFIC REPORTS”, vol 9, NO 10385.
[11] 劉偉仁、姚中業、黃健豪、鍾淑茹、金風,2014,“LED螢光粉技術”,五南出版社,pp. 280-283。
[12] 黃孝文、陳金鑫,2005,“有機電激發光材料與元件”,五南圖書出版社,pp. 34-36。
[13] 李佳珍,2019,“藉由摻入發光材料提升量子點發光二極體之性能”,國立成功大學微電子工程研究所碩士論文。
[14] 張丁文,2019,“可撓式有機發光二極體亮度提升之研究”,國立虎尾科技大學光電工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔