(3.215.180.226) 您好!臺灣時間:2021/03/06 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林詩峻
研究生(外文):LIN, SHIH-JYUN
論文名稱:工具機刀具磨耗預測及線上防追撞系統
論文名稱(外文):Tool wear prediction and online anti-collision system for machine tools
指導教授:覺文郁覺文郁引用關係
指導教授(外文):JYWE, WEN-YUH
口試委員:覺文郁陳俊仁夏恆泰
口試委員(外文):JYWE, WEN-YUHCHEN, CHUN-JENHSIA, HEN-TAI
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:103
中文關鍵詞:主軸負載電流防追撞模型刀具磨耗類神經網路車削
外文關鍵詞:Spindle load currentAnti-collision modelTool wearNeural network-likeTurning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要.......................................................................i
Abstract...................................................................iii
誌謝.......................................................................vii
目錄.......................................................................ix
表目錄.....................................................................xiii
圖目錄......................................................................xv
第一章 緒論................................................................1
1.1 研究背景與動機.......................................................1
1.2 研究目的.............................................................3
1.3 研究流程.............................................................4
1.4 國內外相關文獻.......................................................5
1.4.1 文獻回顧總結........................................................18
1.5 論文架構............................................................18
第二章 系統介紹............................................................20
2.1 系統架構............................................................20
2.2 設備元件介紹........................................................23
2.2.1 程泰-臥式車削中心...................................................23
2.2.2 刀長設定器..........................................................28
2.2.3 NI-USB-6210多功能I/O介面卡..........................................29
2.2.4 研華乙太網I/O模組ADAM-6066..........................................31
2.2.5 交流電流傳感器......................................................32
第三章 系統架構說明與原理...................................................34
3.1 問題描述與條件.......................................................34
3.2 建模模式與建構.......................................................35
3.2.1 符號定義.............................................................35
3.2.2 正規化、標準化與初始解................................................36
3.2.3 激勵函數.............................................................38
3.2.4 學習階段.............................................................42
3.2.5 回想階段.............................................................45
3.2.6 更新權重組...........................................................50
3.3 加工程序建置.........................................................50
3.3.1 防追撞系統之加工工序規劃...............................................51
3.3.2 刀具磨耗預測系統之加工工序規劃..........................................52
第四章 系統開發與實作........................................................57
4.1 切削監測系統..........................................................57
4.1.1 切削訊號..............................................................58
4.2 防追撞系統............................................................58
4.2.1 刀具切削訊號辨別......................................................59
4.2.2 刀具切削負載分析......................................................62
4.2.3 防追撞模型建立........................................................64
4.3 刀具磨耗預測系統......................................................65
4.3.1 刀長設定器重複精度量測.................................................68
4.3.2 特徵值擷取............................................................75
4.3.3 刀具磨耗預測結果......................................................76
4.3.4 刀具磨耗預測結果驗證..................................................80
4.4.1 刀具溫升熱影響........................................................84
4.4.2 刀具溫升熱影響差異....................................................86
4.4.3 不確定因素分析........................................................88
第五章 結論與未來展望........................................................89
5.1 結論.................................................................89
5.2 未來展望.............................................................90
參考文獻.....................................................................91
Extended Abstract...........................................................99

[1]Y. Altintas, 1992, “Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements”﹐J. Eng. Ind. Nov, 114(4)﹐386-392.
[2]T. I. EL-WARDANY, D. GAO and M. A. ELBESTAWI, 1996﹐”Tool condition monitoring in drilling using vibration signature analysis”﹐Tools Manufaet, 36(6), 687-71.
[3]R. J. Kuo and P. H. Cohen, 1997, “Intelligent tool wear estimation system through artificial neural networks and fuzzy modeling”, Artificial Intelligence m Engineering, 12, 229-242.
[4]X. Li, A. Djordjevich, and P. K. Venuvinod, 2000, “Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring”, IEEE Transactions on Industrial Electronics, 47(3).
[5]J. Kopac, S. Sali, 2001, “Tool wear monitoring during the turning process”, Journal of Materials Processing Technology, 312-316.
[6]P. B. Huang, 2002, “A neural networks-based in-process adaptive surface roughness control (NN-IASRC) system in end-milling operations﹐Iowa State University.
[7]T. O. Zel and Y. Karpat, 2003, “Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks”, International Journal of Machine Tools & Manufacture, 45, 467–479.
[8]X. Li, H. X. Li, S. Member, X.P. Guan and R.Du , 2004, “Fuzzy Estimation of Feed-Cutting Force From Current Measurement-A Case Study on Intelligent Tool Wear Condition Monitoring”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 34(4).
[9]李金山、林瑞璋、梁榮濱、吳晟懋,2006,”刀具壽命最佳化之切削參數探討”,建國科技大學自動化工程系暨機電光系統研究所。
[10]康晶、馮長建,2009,”刀具磨损监测及破损模式的识别”,振動、測試與診斷,第29卷第一期。
[11]林鴻雄,2009,”端铣刀铣削SKD11硬鋼之刀具磨耗研究”,華梵大學 機電工程學系。
[12]D. Karayel, 2009, “Prediction and control of surface roughness in CNC lathe using artificial neural network, journal of materials processing technology”, 209﹐3125–3137.
[13]S. Zhang, J. Li, 2010, “Tool Wear Criterion, Tool Life, and Surface Roughness during high-speed End Milling Ti-6Al-4V Alloy”﹐Journal of Zhejiang University-SCIENCE, 11, 587–595.
[14]T. Lan, 2010, “Tool Wear Optimization for General CNC Turning Using Fuzzy Deduction”, Engineering, 2, 1019-1025.
[15]M. Noh and D. S. Hong, 2011, “Implementation of Remote Monitoring System for Prediction of Tool Wear and Failure Using ART2”﹐Journal of Central South University of Technology, 18 , 177–183.
[16]楊忠祥,2012,”S50C中碳鋼精铣削刀具壽命之研究”,國立中興大學機械工程學系。
[17]M. Rizal, J. A. Ghani, M. Z. Nuawi and C. H. C. Harona, 2013, “Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system”, Applied Soft Computing, 13(4), 1960-1968.
[18]潘建新、潘祎,2014,”刀具磨损与切削用量关联度应用与试验研究”, 机械研究与应用第5期,第27卷,总第133期。
[19]Q. Guo, S. Yu and L. He, 2014, “Research on Tool Wear Monitoring Method based on Project Pursuit Regression for a CNC Machine Tool”, Research Journal of Applied Sciences, Engineering and Technology 7(3), 438-441.
[20]廖學佑,2015,”智慧化加工表面粗糙度預測模型及材料移除率最佳化研究-以塑膠射出成型模銑削為例”,國立中興大學機械工程學研究所。
[21]卓家弘,2015,”開發具加工感測與磨耗量測之刀具分析系統”,國立高雄第一科技大學 電機工程研究所。
[22]許志豪,2015,”應用類神經網路與多重感測器之微铣削刀具狀態偵測系統開發”。國立中興大學機械工程系。
[23]M. A. F. Ahmada, M. Z. Nuawia, S. Abdullaha, Z. Wahida, Z. Karimb and M. Dirhamsyahc, 2015, “Development of tool wear machining monitoring using novel statistical analysis method”, I-kazTM, Procedia Engineering, 101, 355 – 362.
[24]J. K. Abbass & A. Al-Habaibeh, 2015, “A Comparative Study of Using Spindle Motor Power and Eddy Current for the Detection of Tool Conditions in Milling Processes”, IEEE 13th International Conference on Industrial Informatics.
[25]Ahmed A. D. Sarhan, 2015, “Adaptive neuro-fuzzy approach to predict tool wear accurately in turning operations for maximum cutting tool utilization”, ScienceDirect IFAC-PapersOnLine, 48(1)﹐093–098.
[26]朱永猛,吴军,吴超勇,苏永衡,2016,”基于自适应神经模糊推理系统的刀具磨损监测”,机械制造与检测技术第 37 卷,第 9 期。
[27]陈永鹏,曹华军,杨 潇,2017,高速干切滚齿工艺滚刀切削刃载荷分布特性研究,机械工程学报,第53卷第15期。
[28]L. Hao, L. Bian, N. Gebraeel and Jianju, 2017, “Residual Life Prediction of Multistage Manufacturing Processes With Interaction Between Tool Wear and Product Quality Degradation”, IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 14(2).
[29]J. Zhang, B. Starly, Y. Cai, P. H. Cohen, Y. S. Lee, 2017, “Particle learning in online tool wear diagnosis and prognosis”, Journal of Manufacturing Processes, 28, 457– 463.
[30]陳永曦,2018,融合式機上智能檢測與補正方法及系統之研究,中原大學 機械工程學系。
[31]B. Jose, K. Nikita, T. Patil, S. Hemakumar and Dr. P. Kuppan, 2018, “Online Monitoring of Tool Wear and Surface Roughness by using Acoustic and Force Sensors”, Materials Today: Proceedings, 5, 8299–8306.
[32]G. Xu, H. Zhou, J. Chen, 2018, “CNC internal data based incremental cost-sensitive support vector machine method for tool breakage monitoring in end milling”, Engineering Applications of Artificial Intelligence, 74, 90-103.
[33]T. Mikołajczyk, K. Nowicki, A. Bustillo and D. Yu Pimenov, 2018, “Predicting tool life in turning operations using neural networks and image processing”, Mechanical Systems and Signal Processing, 104, 503-513.
[34]Y. Shrivastava and B. Singh, 2018, “Stable cutting zone prediction in CNC turning using adaptive signal processing technique merged with artificial neural network and multi-objective genetic algorithm”, European Journal of Mechanics, 70, 238-248.
[35]黃珠伶,2019,Smart Machine Engine 之刀具監測系統開發,國立虎尾科技大學 自動化工程系碩士班。
[36]程泰機械股份有限公司,2020,GLS-1500 系列規格,https://www.goodwaycnc.com/exhtml_goodway/goodway_tw/turning/horizontal/gls-1500/index.htm
[37]益佃五金行有限公司,2020,外徑車刀架,http://weenix.com.tw/view.asp?id=108&pd_type=406&pdid=sub3&m=1&m2=400&m3=406&pg=1
[38]益佃五金行有限公司,2020,外徑車刀片,http://weenix.com.tw/view.asp?id=515&pd_type=575&pdid=sub2&m=10&m2=575&pg=1
[39]世鋁網,2020,鋁合金車削過程中積屑瘤的產生,https://big5news.cnal.com/2009/07-03/124662234162376.shtml
[40]Renishaw,2020,高精度量測臂搭配 RP3 刀具設定測頭,https://www.renishaw.com.tw/tw/high-precision-arms-with-rp3-tool-setting-probe--6098
[41]Engineer Ambitiously,2020,USB-6210多功能 I/O 介面卡,https://www.ni.com/zh-tw/support/model.usb-6210.html
[42]Advantech,2020,乙太網路 I/O 模組,https://buy.advantech.com.tw/%E8%B3%87%E6%96%99%E6%93%B7%E5%8F%96%E6%A8%A1%E7%B5%84/%E9%81%A0%E7%AB%AF%E8%B3%87%E6%96%99%E6%93%B7%E5%8F%96%E6%A8%A1%E7%B5%84-%E4%B9%99%E5%A4%AA%E7%B6%B2%E8%B7%AF-I-O-%E6%A8%A1%E7%B5%84/model-ADAM-6066-D.htm
[43]Topstek,2020,True RMS Current Sensor,http://www.topstek.com/en/product-552214/True-RMS-4-20mA-Output-Clamp-On-AC-Current-Transformers-TU12P-CL420-TU20P-CL420.html
[44]Medium,2020,Preprocessing Data : 數據特徵標準化和歸一化,https://medium.com/ai%E5%8F%8D%E6%96%97%E5%9F%8E/preprocessing-data-%E6%95%B8%E6%93%9A%E7%89%B9%E5%BE%B5%E6%A8%99%E6%BA%96%E5%8C%96%E5%92%8C%E6%AD%B8%E4%B8%80%E5%8C%96-9bd3e5a8f2fc
[45]維基百科,2020,激勵函數,https://zh.wikipedia.org/wiki/%E6%BF%80%E6%B4%BB%E5%87%BD%E6%95%B0
[46]Medium,2020,機器學習- 神經網路(多層感知機 Multilayer perceptron, MLP) 含倒傳遞(Backward propagation)詳細推導,https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-%E5%A4%9A%E5%B1%A4%E6%84%9F%E7%9F%A5%E6%A9%9F-multilayer-perceptron-mlp-%E5%90%AB%E8%A9%B3%E7%B4%B0%E6%8E%A8%E5%B0%8E-ee4f3d5d1b41

電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔