跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林猷雅
研究生(外文):LIN, YOU-YA
論文名稱:電動車輛能源效率與二氧化碳之分析與探討
論文名稱(外文):Analysis and Evaluation of the Energy Efficiency and Carbon Dioxide for Electric Vehicles
指導教授:吳建勳
指導教授(外文):WU, CHIEN-HSUN
口試委員:吳建勳鐘證達劉錦源
口試委員(外文):WU, CHIEN-HSUNCHUNG, CHENG-TALIU, JIN-YUAN
口試日期:2020-07-17
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:電動汽車能源效率二氧化碳模擬平台全球協調輕型汽車測試程序(WLTP)
外文關鍵詞:Electric VehiclesEnergy EfficiencyCarbon DioxideSimulation PlatformWorldwide Harmonized Light Vehicles Test Procedure (WLTP)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以臺灣現有輕型車輛法規「法規新歐洲駕駛循環(New European Drive Cycle, NEDC)」與「全球輕型車測試規範(Worldwide Harmonized Light Vehicles Test Procedures, WLTP)」作為測試平台模擬條件,選取三台車輛進行能源效率分析,使用Matlab/Simulink®軟體建立三台車基本車輛數據及整車系統架構,並以不同行車型態NEDC以及WLTP之CLASS-3b進行模擬分析,最終可得到內燃機車輛之油箱傳輸到車輪的平均能源效率,以及電動車輛之電池傳到車輪的平均轉換效率,經計算探討車輛從煉油廠/發電廠傳輸到車輛最終傳至車輪之總能源效率,以及探討整過程產生之總二氧化碳排放量。其模擬結果顯示在NEDC型態下,本測試之一台內燃機車輛與兩台電動車輛總能源效率為9.37 %、22.34 %與23.78 %;內燃機車輛與電動車輛每公里之總二氧化碳排放量分別為227.48 g、89.92 g與102.35 g;在WLTC-3b型態下,兩台電動車輛總能源效率為20.37 %與21.25 %;每公里之總二氧化碳排放量分別為101.01 g與110.56 g。因此本研究可提供節能車輛之總能源效率與總二氧化碳,提供有價值的參考。
This thesis aims at light vehicle regulations under new European drive cycle (NEDC) and world-wide harmonized light duty test cycle (WLTP) of the test platform conditions in Taiwan. And select three vehicles for energy consumption analysis using Matlab/Simulink® software to establish the basic vehicle data and vehicle system architecture of the whole vehicle, and perform simulation analysis with NEDC and WLTP of driving pattern. Finally, the average energy efficiency of the fuel tank of the internal combustion engine (ICE) vehicles is transmitted to the wheel, and the average conversion efficiency of the battery of the electric vehicle is transmitted to the wheel can be obtained, and the relationship between the total energy efficiency of the vehicle and carbon dioxide emissions is discussed. The simulation results under the NEDC are shown that the energy efficiency of ICE vehicles and electric vehicles are 9.37 %、22.34 % and 23.78 %, respectively; the carbon dioxide emissions of ICE vehicles and electric vehicles are 227.48 g/km、89.92 g/km and 102.35 g/km, respectively; the total energy efficiency of the electric vehicle are 20.37 % and 21.25 %, respectively under the WLTC-3b driving cycle. Consequently, the study can offer a valuable reference for energy efficiency and carbon dioxide for energy-saving vehicles in the future.
摘要......i
Abstract......iii
誌謝......v
目錄......vii
表目錄......ix
圖目錄......x
符號說明......xii
第一章 緒論......1
1.1 研究動機......2
1.2 研究目的......2
1.3 研究方法......4
1.4 文獻回顧......5
1.4.1不同行車型態的模擬結果文獻探討......5
1.4.2不同車輛參數對模擬結果之文獻探討......8
1.5 論文架構......10
第二章 車輛系統架構與動態模型......11
2.1 整車系統架構......12
2.2 行車型態模組......15
2.3 駕駛人模組......19
2.4 內燃機引擎模組......19
2.5 驅動馬達模組......21
2.6 鋰電池模組......23
2.7 無段變速箱模組......25
2.8 車輛動態模組......26
第三章 測試車輛之能源效率與二氧化碳分析......29
3.1 車輛基本模擬分析......29
3.1.1汽油車基本模擬分析......30
3.1.2純電動車基本模擬分析......32
3.2 能源效率分析......37
3.2.1汽油車能源效率分析結果......37
3.2.2電動車能源效率分析結果......39
3.3 純電動車依據能源來源不同進行總能源效率分析......40
3.3.1以天然氣、煤與重油發電模式......40
3.3.2以陽光、煤電與核電發電模式......41
3.4 二氧化碳排放分析......43
第四章 結論與未來工作......47
4.1 結論......47
4.2 未來工作......48
參考文獻......49
附錄A 實車法規測試流程......54
Extended Abstract......59
[1]https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=865(經濟部能源局107年能源供需概況)
[2]https://www.statista.com/statistics/307194/top-oil-consuming-sectors-world wide/(Distribution of oil demand in the OECD in 2017 by sector)
[3]https://www.fpg.com.tw/tw/issue/1/115(台灣PM2.5的主要來源)
[4]https://www.eia.gov/energyexplained/energy-and-the-environment/greenhou se-gases-and-the-climate.php(Energy and the environment explained)
[5]https://www.slideshare.net/DoEnergy/20180329-100844018(能源轉型行不行?台灣能源轉型的挑戰)
[6]https://motor.u-car.com.tw/article/12401/%E5%85%AC%E9%96%8B%E6 %B2%B9%E8%80%97%E8%B3%87%E8%A8%8A%EF%BC%8C%E8%83%BD%E6%BA%90%E5%B1%80%E5%AE%A3%E4%BD%88%E6%B1%BD%E3%80%81%E6%A9%9F%E8%BB%8A%E8%83%BD%E6%BA%90%E6%95%88%E7%8E%87%E5%88%86%E7%B4%9A%E6%A8%99%E7%A4%BA7%E6%9C%881%E6%97%A5%E5%95%9F%E5%8B%95? utm_source=motor&utm_medium=list&utm_name=page_13&utm_content=title(公開油耗資訊,能源局宣佈汽、機車能源效率分級標示7月1日啟動)
[7]張泉湧,全球氣候變遷:危機與轉機,(第一版),五南出版社。
[8]https://climate.nasa.gov/vital-signs/carbon-dioxide/(NASA Missions That Observe CO2)
[9]https://www.greenpeace.org/international/story/29458/peak-oil-decline-coronavirus-economy/(The decline of oil has already begun)
[10]https://enews.epa.gov.tw/Page/894720A1EB490390/a05bb98e-961f-4160-abe6-d3db725a1a11(行政院環保署澄清2030年淘汰全部燃油車錯誤說法)
[11]https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=13360 (ARTC車輛污染管制再加嚴 全球調和輕型車測試程序)
[12]Tsokolis D., Tsiakmakis S., Dimaratos A., Fontaras G., Pistikopoulos P., Ciuffo B., Samaras Z., “Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol”, Applied Energy, Vol. 179, 2016, pp. 1152-1165.
[13]Fontaras G., Ciuffo B., Zacharof N., Tsiakmakis S., Marotta A., Pavlovic J., Anagnostopoulos K., “The difference between reported and real-world CO2 emissions: How much improvement can be expected by WLTP introduction?”, Transportation Research Procedia, Vol. 25, 2017, pp. 3933-3943.
[14]Stefanos Tsiakmakis,Georgios Fontaras,Konstantinos Anagnostopoulo s,Biagio Ciuffo,Jelica Pavlovic,Alessandro Marotta''a simulation based approach for quantifying co2 emissions of light duty wehicle fleets,a case study on WLTP introduction.''8 June 2017
[15]Pavlovic J., Ciuffo B. Fontaras G., ValverdeV., Marotta A., “How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?”, Transportation Research Part A, Vol. 111, 2018, pp. 136-147.
[16]潘學義,「輕型柴油小客車廢氣排放研究-以V公司對應排放標準6期為例」,國立台北科技大學車輛工程學系碩士論文,2018。
[17]Du, Y., et al., “Predicting vehicle fuel consumption patterns using floating vehicle data.” J. Environ. Sci., Vol. 59, pp. 24-29, 2017.
[18]Du, Y., et al., “Predicting vehicle fuel consumption patterns using floating vehicle data.” J. Environ. Sci., Vol. 59, pp. 24-29, 2017.
[19]Cecchel, S., et al., “Impact of reduced mass of light commercial vehicles on fuel consumption, CO2 emissions, air quality, and socio-economic costs.” Sci. Total Environ., Vol. 613, pp. 409-417, 2018.
[20]Sullivan, J. L., Lewis, G. M., Keoleian, G. A., “Effect of mass on multimodal fuel consumption in moving people and freight in the US.” Transport. Res. Part D: Transport Environ, Vol. 63, pp. 786-808, 2018.
[21]Du, J., et al., “Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China.” Energy,Vol. 35, Iss. 12, pp. 4671-4678, 2010.
[22]Wengraf, I., “Easy on the Gas: The Effectiveness of Eco-Driving. Royal Automobile Club Foundation, Tech. Rep., 2012
[23]Merkisz, J., Rymaniak, Ł., “The assessment of vehicle exhaust emissions referred to CO2 based on the investigations of city buses under actual conditions of operation.” Eksploatacja i Niezawodnosc - Maintenance and Reliability, Vol. 19, pp. 522-529, 2017.
[24]Duarte, G. O., et al, “Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements.” Transport Res Part D, Vol. 44, pp. 43-54, 2016.
[25]Cayot, J. F., “Compared fuel consumption between gasoline and diesel cars during short urban drive, Reducing automobile fuel consumption: a challenge for the turn of the century.” In: Proceedings, Rueil-Malmaison, pp. 57-86, 1996.
[26]Tzirakis, E., et al. “Vehicle emissions and driving cycles: comparison of the athens driving cycle (ADC) with ECE-15 and european driving cycle (EDC).” Global NEST Journal, Vol. 8, pp. 282-290, 2006.
[27]Gao, Y, Checkel, M. D., “Experimental measurement of on-road CO2 emission and fuel consumption functions.” SAE Technical Paper Series, 2007-01-1610, 2007.
[28]Gallus, J., et al. “Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS) .” Transport. Res. Part D: Transport Environ, Vol. 52, pp. 215-226, 2017.
[29]https://kknews.cc/car/lkz2r32.html (Argonne National Laboratory:Estimation of Energy Efficiencies of U.S. Petroleum Refineries)
[30]https://www.taipower.com.tw/tc/page.aspx?mid=201(重要電業經營績效指標實績)
[31]https://www.deltaww.com/Products/CategoryListT1.aspx?CID=0808&PID=3917&hl=zh-TW&Name=DC+Wallbox (台達DC Wallbox電動車直流充電機)
[32]http://technews.tw/2020/04/17/six-junction-iii-v-solar/(轉換效率創歷史新高,NREL 研製 47.1% 高效率太陽能電池)
[33]https://technews.tw/2019/02/11/improve-solar-energy-efficiency/ (2016能源統計手冊)
[34]https://www.mpoweruk.com/energy_efficiency.htm(Battery and Energy Technologies)
[35]https://greencar.epa.gov.tw/webpage/carsearch.aspx(行政院環保境保護署)
[36]http://www.fueleconomy.gov/feg/download.(EPA EMERGY)
[37]https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=12014(能源局108年電力排碳係數)

電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top