跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁嘉文
研究生(外文):DING, ZHENG-WEN
論文名稱:多旋翼飛行器暨自動起降電池充電交換平台之研製
論文名稱(外文):The Development of Multi-Copter, Automatic Take Off and Landing Battery Charging and Changing Platform
指導教授:鄒杰烔
指導教授(外文):ZOU, JIE-TONG
口試委員:林煥榮石大明鄒杰烔
口試委員(外文):LIN, HUAN-JUNGSHIH, TA-MINGZOU, JIE-TONG
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:飛機工程系航空與電子科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:無人飛行載具即時動態定位技術(RTK)紅外線導引系統(IR-LOCK)影像追蹤可程式邏輯控制器(PLC)電池充電交換平台18650電池X型六旋翼飛行器超級電容
外文關鍵詞:Unmanned aerial vehicle(UAV)real time-kinematic (RTK) technologyinfrared guidance system (IR-LOCK)visual trackingprogrammable logic controller (PLC)battery charging and exchange platform18650 batteryx-type six-axis rotorcraftsuper capacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:2
至今,對於無人飛行載具(UAV)的應用廣泛,如:農業噴灑農藥、國土調查、空中保全監控、氣候與環境的監控等。為了有效執行任務,本研究研製出一款多旋翼飛行器能自動起降至電池充電交換平台進行更換電池及充電,多旋翼飛行器有優點也有缺點,優點是能代替人們來執行一些繁雜及人們無法到達地區的任務。缺點是續航力差會使得我們任務無法完全執行,執行至一半就必須得降落,手動更換電池後,再繼續執行飛行任務。因此為了延長無人機之續航力,必須對無人機的電池進行改造,我們有了對延長無人機續航力的研究方法就是研製出一款自動起降電池充電交換平台,讓無人機來自主性的降落,並且能夠不需藉靠人力來更換電池,最後再繼續執行未完成的任務。
本論文使用之飛行機器人為X型六旋翼飛行器,運用即時動態定位技術(Real Time- Kinematic,RTK)來讓無人機能夠精準降落至交換平台上。另外搭配紅外線導引系統(IR-LOCK)透過影像追蹤(Visual tracking)技術,使飛行器來追蹤平台上的紅外線LED燈板,以便減少降落時的位置誤差。待飛行器降落至交換平台後,最後階段則靠平台之機構輔助導引的方式,使飛行
器能精準定位至交換電池之位置。
本論文對於多旋翼飛行器所採用的Li-Po鋰聚電池有所改進,由於要能進行自動充電功能,而Li-Po鋰聚電池通常會搭配一個平衡充電的接頭,會增加自動充電的困難。因此本研究採用18650電池,並搭配一塊平衡充電保護板來進行自動充電功能。
本論文採用一組兩軸XY平台配合V字形對位裝置,使多旋翼飛行器能夠順利與交換平台上的機器手臂結合,並開始自動更換電池。本論文之交換平台的整個交換流程皆採用可程式邏輯控制器(Programmable Logic Controller,PLC)來進行控制。
為了在主電源18650電池斷電時,讓飛控能持續收到飛行器姿態及資訊。本論文使用超級電容供電給飛控。在更換電池時,超級電容將開始對飛控進行供電動作,在主電源未斷電前都是由18650電池對超級電容充電來維持超級電容之電壓。
由實驗結果證實,即時動態定位技術(RTK)搭配紅外線導引系統(IR-LOCK),能使飛行機器人成功準確降落在交換平台上。最終順利將多旋翼飛行機器人上之沒電的電池拆取下來,並換上充飽的電池準備下次任務。


Nowadays, it is widely used for unmanned aerial vehicles (UAV), such as, agricultural spraying of pesticides, land surveys, air security monitoring, climate and environment monitoring, etc. In order to effectively perform the task, this research developed a multi-copter that can automatically take off and landing the battery charging exchange platform for battery replacement and charging. The multi-copter has advantages and disadvantages. The advantage is that it can replace people to perform complex and people can not reach the task of the area. The disadvantage is that the poor endurance will make our mission impossible. We must land halfway through the mission. After manually changing the battery, we can continue to perform the mission. Therefore, in order to extend the endurance of the drone, the battery of the drone must be transformed. We have a research method to extend the endurance of the drone, which is to develop an automatic take-off and landing battery charging exchange platform to let the drone land autonomously. And can replace the battery without relying on manpower, and finally continue to perform unfinished tasks.
The multi-copter used in this paper is an six-axis rotorcraft. It uses real time-kinematic (RTK) technology to allow the UAV to land on the exchange platform accurately. In addition, it is equipped with an infrared guidance system (IR-LOCK). Visual tracking technology is used to enable the multi-copter to track the infrared LED light board on the platform, so as to reduce the position error when landing. After the drone has landed on the exchange platform, the final stage relies on the platform's mechanism to assist the guidance, so that the drone can be accurately positioned to the position of the exchange battery.
This paper improves the Li-Po lithium poly battery used in multi-rotor . Because of the ability to perform automatic charging, the Li-Po lithium poly battery will usually be equipped with a balanced charging connector, which will increase the difficulty of automatic charging. Therefore, this study uses 18650 battery and a balanced charging protection board for automatic charging.
This thesis uses a set of two-axis X-Y platform with V-shaped alignment device, so that the multi-rotor aircraft can be smoothly combined with the robot arm on the exchange platform, and the battery is automatically replaced. The entire exchange process of the exchange platform of this paper is controlled by Programmable Logic Controller (PLC).
In order to allow the flight control to continuously receive the attitude and information of the multi-copter when the main power supply 18650 battery is powered off. This paper uses super capacitors to power the flight controller. When the main power supply is cut off, the super capacitor will start to supply power to the flight controller. When replacing the battery, the supercapacitor will start to supply power to the flight controller. Before the main power supply is powered off, the supercapacitor is charged by the 18650 battery to maintain the voltage of the supercapacitor.
It is confirmed by the experimental results that the real time-kinematic technology (RTK) and the infrared guidance system (IR-LOCK) can enable the flying robot to successfully land on the exchange platform successfully. Finally, the bad battery on the multi-rotor was successfully removed and replaced with a fully charged battery for the next mission.


摘要.........................................i
Abstract.....................................iii
誌謝..........................................vi
目錄..........................................vii
表目錄.........................................x
圖目錄.........................................xi
符號說明.......................................xvi
第一章 緒論...................................1
1.1 前言...................................1
1.2 研究動機...................................2
1.3 論文架構...................................3
第二章 文獻探討...............................4
2.1 多旋翼飛行載具起源..........................4
2.2 GPS衛星定位應用...........................6
2.2.1 全球衛星定位系統..........................6
2.2.2 自主移動監控系統..........................7
2.3 紅外線導引系統(IR-LOCK).....................8
2.4 可程式邏輯控制器.............................9
2.5 電池充電更換站...............................10
2.5.1 熱插拔技術.................................10
2.5.2 鼓式轉盤...................................11
2.5.3 動態捕捉系統(Motion Capture System).........11
2.5.4 新竹工業技術研究院..........................12
2.5.5 Eli-Drone Nest...........................13
2.5.6 機構輔助定位................................14
2.5.7 行李箱更換站.................................15
2.5.8 植保機填藥電池更換站..........................15
2.6 無線充電站.....................................16
第三章 研究內容與方法..............................17
3.1 即時動態定位技術(RTK)...........................17
3.1.1 即時動態定位(RTK)介紹.........................17
3.1.2 即時動態定位(RTK)設定及安裝....................19
3.2 紅外線影像導引系統(IR-LOCK).......................21
3.2.1 紅外線影像導引系統(IR-LOCK)設置...................22
3.2.2 即時動態定位(RTK)、普通GPS與紅外線影像導引系統輔助精準降落的定位精度比較.......25
3.3 雷射感測器.............................................31
3.3.2 雷射感測器安裝方式......................................31
3.3.3 雷射感測器參數設定......................................32
3.4 18650電池...............................................33
3.5 新型電池盒與電池盒快速接頭....................................34
3.6 超級電容..................................................37
3.7 Petri Net模型分析.........................................39
3.8 可程式邏輯控制器(PLC).......................................41
第四章 六旋翼飛行器............................................43
4.1 飛行原理介紹..............................................43
4.2 飛行控制電腦介紹...........................................45
4.2.1 硬體架構..................................................46
4.2.2 控制理論................................................47
4.3 新型腳架設計...............................................49
第五章 電池充電交換平台...........................................52
5.1 電池充電交換平台介紹.........................................52
5.2電池充電交換平台之系統動作流程分析...............................52
5.3 電池充電交換平台系統架構.......................................53
5.3.1 紅外線LED燈板..............................................53
5.3.2 紅外線遮斷感測器.............................................54
5.3.3 推桿........................................................55
5.3.4 固定腳架機構...............................................56
5.3.5 夾爪機構..................................................56
5.3.6 電池儲放區.................................................58
5.3.7 V型導軌定位設計............................................59
5.3.8 電池充電交換平台之控制區......................................59
第六章 實驗結果....................................................61
6.1 飛行器降落於電池充電交換平台......................................61
6.2 電池充電交換平台.................................................67
6.3 Petri Net模型來分析自動起降電池更換平台............................72
第七章 結論與未來展望.................................................74
參考文獻..............................................................75
附錄一 PLC之流程階梯圖..................................................79
Extended Abstract.....................................................88
[1]Wikipedia, " Coriolis effect". June 2014.
http://en.wikipedia.org/wiki/Coriolis_effect
[2] 每日頭條, "四軸多旋翼無人機飛行器的歷史". September 2018.
https://kknews.cc/zh-tw/military/p29manp.html
[3] Wikipedia, "Curtiss-Wright VZ-7". February 2020.
https://en.wikipedia.org/wiki/Curtiss-Wright_VZ-7
[4] All the world’s rotorcraft, "Convertawings Model A". June 2011.
http://www.aviastar.org/helicopters_eng/convertawings.php
[5] 56VK, "GPS技術簡介Satellite Tracking". September 2010.
http://tw.55vi.com/technology/GPS-jishujianjie.html
[6] Khairul Nizam Tahar,Wan Abdul Aziz Wan Mohd Akib, Wan Mohd Naim Wan Mohd, Anuar Ahmad,"Aerial mapping using autonomous fixed-wing unmanned aerial vehicle". 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, May 2012.
[7]Patrick Henkel, Andreas Sperl, "Real-time kinematic positioning for unmanned air vehicles". IEEE Aerospace Conference, June 2016.
[8] K. Ohno,T. Tsubouchi,S. Yuta, "Outdoor map building based on odometry and RTK-GPS positioning fusion". Proceedings of IEEE International Conference on Robotics and Automation, ICRA '04. 2004.
[9] J. Meguro, T. Hashizume, J. Takiguchi, R. Kurosaki, "Development of an Autonomous Mobile Surveillance System Using a Network-based RTK-GPS". Proceedings of the IEEE International Conference on Robotics and Automation, April,2005.
[10] Youtube, "IR LOCK DRONE HOLD POSITION",August,2018.
https://www.youtube.com/watch?v=NJcpPgQS1r0
[11]Stephan, "Precision Landing with IR Lock"October,2016.
https://www.youtube.com/watch?v=u9xSm3r7jiA
[12]王文義、宓哲民、陳文軒、陳文耀,「PLC原理與應用實務」,P1-4,2007年09月。
[13] Danny Lee, Joe Zhou, Wong Tze Lin, "Autonomous battery swapping system for quadcopter". International Conference on Unmanned Aircraft Systems (ICUAS),June,2015.
[14] N. Kemal Ure, Girish Chowdhary, Tuna Toksoz,Jonathan P. How, Matthew A. Vavrina, John Vian, "An Automated Battery Management System to Enable Persistent Missions With Multiple Aerial Vehicles". IEEE/ASME Transactions on Mechatronics, Page:275–286,Volume:20,Issue:1,Feb,2015.
[15] Katsuya Fujii, Keita Higuchi, Jun Rekimoto, "Endless Flyer: A Continuous Flying Drone with Automatic Battery Replacement". 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing,Dec,2013.
[16] Yi-Cheng Wu, Ming-Chang Teng, Yi-Jeng Tsai, "Robot docking station for automatic battery exchanging and charging". IEEE International Conference on Robotics and Biomimetics,Feb,2009.
[17]電腦與通訊,「無人機群雲端監控-警政應用方案」,2017/09。
https://ictjournal.itri.org.tw/Content/Messagess/contents.aspx?MmmID=654304432122064271&MSID=745621370765136356
[18]Eli, "Eli Drone Nest",February,2017.
https://www.youtube.com/watch?time_continue=22&v=k88oFmXDu2c
[19] Enrique Juan Casado Magana, David Esteban Capillo,David Scarlatti Jimenez, Ivan Maza,Fernando Cabellero,’’Device And Method For Use With Unmanned Aerial Vehicles’’. Unisted States, Patent Application Publication, Oct. 30, 2014.
[20] Xuguang Dong ,Yuankai Ren ,Jie Meng , Shizhou Lu, Tong Wu,’’ Design and Implementation of Multi-rotor UAV ower Relay Platform’’. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC 2018).
[21] 駱小來、吳海彬、王國強、朱祥明,「換電池裝置及方法」中華人民共和國國家知識財產權局,2018/10/14。
[22] Mingxi WANG, Yuan LIN, Hongju LI,”Unmanned Aerial Vehicle Base Station System And Method’’. Unisted States, Patent Application Publication, May 11, 2017.
[23] 김성호,이상훈,’’有整體容器和電池的無人駕駛飛行器自動更換系統’’ Korea, Patent Application Publication, 2017/07/29.
[24] T. Campi, S. Cruciani, M. Feliziani, F. Maradei, ” High efficiency and lightweight wireless charging system for drone batteries”. AEIT International Annual Conference,2017.
[25] 詹君正,「利用全國性e-GPS衛星定位基準網辦理土地複丈精度之研究-以鶯歌地區為例」,國立政治大學地政研究所碩士論文,2008。
[26] Arducopter, "Pixhawk". September 2015.
http://copter.ardupilot.com/
[27] Angelo Nikko Catapang , Manuel Ramos, " Obstacle detection using a 2D LIDAR system for an Autonomous Vehicle". 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2016
[28] 王岳民,「具視覺追蹤與避障功能的自主飛行機器人之研製」,國立虎尾科技大學,碩士論文,2019年1月。
[29] K. Suzuki, P. Kemper Filho, J. Morrison, "Automatic battery replacement system for UAVs: Analysis and design". Journal of Intelligent & Robotic Systems, vol. 65, no. 1–4, pp. 1-24, 2011.
[30] 曾宥竣,「四旋翼飛行機器人與影像追蹤之整合應用」,國立虎尾科技大學,碩士論文,2012年7月。
[31] 王啟義,「基於動態捕捉定位系統之群組飛行機器人研製」,國立虎尾科技大學,碩士論文,2015年12月。
[32] Arducopter,”Pixhawk”. September 2015.
http://copter.ardupilot.com/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top