跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊璂
研究生(外文):WANG, CHUN-CHI
論文名稱:應用於智能產線之節點控制器研製與網路系統整合
論文名稱(外文):Node Controller Development and Networking System Integration for an Intelligent Production Line Application
指導教授:宋朝宗
指導教授(外文):SONG, CHAU-CHUNG
口試委員:宋朝宗洪崇文陳裕愷吳永駿吳毓恩
口試委員(外文):SONG, CHAU-CHUNGHUNG, CHUNG-WENCHEN, YU-KAIWU, YUNG-CHUNWU, YU-EN
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:飛機工程系航空與電子科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:84
中文關鍵詞:航太精密製造EtherCATSCADA智能產線運動學
外文關鍵詞:Aviation Precision ManufacturingEtherCATSCADAIntelligent Manufacturing LineKinematics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
近年來,國際航太產業隨著全球化經濟發展的趨勢,航空產業運輸量亦隨之逐年成長,進而加劇所對應之航太零組件製造需求量隨之與日俱增,其中包含機體結構、發動機等相關零組件,然而攸關航太精密製造之工具機設備,長久以來皆由外國大廠所壟斷,有鑑於此,行政院遂於2014年提出高值化航太級加工設備與應用整合性計畫,希望結合國內航太產業的終端使用者,打造國產高性能航太工具機設備,導入製造產線進行航太零組件加工驗證,推動國內工具機業者進入航太加工領域,以國產工具機打入國際航太供應鏈為最終目標。
本論文將針對研製網路節點控制器與航太精密製造產線整合進行研究,採用EtherCAT 現場總線做為整體產線通訊,並以 CoE(CANopen over EtherCAT)做為 EtherCAT應用層通訊,透過 TwinCAT 做為主站來建立對各從站節點之網路連線,使用 C#介面對主站進行資料連結建置一套具備實時監控與資料擷取的 SCADA 系統,完善整體產線之間,加工機台與設備間之實時性操作和廠務人員之實時性防護。研製之網路節點控制器主要應用於加工機台上之控制馬達,期使加工件能達到多角度加工為目標。本控制器除了實現基本 EtherCAT 協定網絡通訊物件外,且需符合 CiA402 協定中馬達運動控制之規範,達到與各站節點設備之間的智能通訊。最後因應智能產線整合需求,將透過所設計之介面進行手臂控制功能,如單軸運動模式或座標運動模式,搭配點位、角度回授來完成產線加工件進出料與整體產線排程設定,利用運動學推算機械手臂各軸角度並使用幾何解法來縮減手臂關節角度之運算時間。
In recent years, following the popularity of global aerospace industry, the number of airline passengers has grown year by year. Therefore, the development of new civil aircraft is strong demand. In addition, the corresponding aerospace components are manufactured, and the demand for components such as the aircraft structure and the engine is increasing day by day.
However, the machine tool equipment required for aerospace manufacturing has always been exclusive to foreign tool machine manufacturers, and the domestic aerospace manufacturing industry orders are weak, mainly because the market has insufficient trust. Therefore, in 2014,the Executive Yuan hopes to combine the end users of the domestic aerospace industry to build domestic high-performance aerospace machine tools and equipment, and introduce the manufacturing line to carry out the verification of aerospace components, and then promote the domestic tool machine industry to enter the aerospace processing field. The final goal is to promote the domestic machine tools to enter the international aerospace supply chain.
In this thesis, the development of node controller and the integration of intelligent aerospace manufacturing line is focused and studied by applying the EtherCAT. The CoE (CANopen over EtherCAT) is used as the application-layer protocol and the TwinCAT is used as network communication from master to Slaves. With regard to intelligent production line, the SCADA system is established by C# interface, with real-time monitoring and data acquisitionfunctions to achieve the real-time communication between the operator and the tool machines.
The node controller with EtherCAT is mainly applied to control the movements of each axis motor for tool machine to realize multi-angle metal processing. The proposed controller constructs intelligent communication between all devices, and also needs to implement with the motor motion control specification subjected to the CiA402 protocol. At last, for the integration of intelligent manufacturing line , the designed control interface is also used to the robot arm control function such as single-joint or coordinate motion , position and angle feedback signal to execute the workpiece in and out , and to set the schedule of whole production line.The kinematics method is used to calculate the angle of the axis and shorten the processing time by geometric method.
摘要...i
Abstract...iii
誌謝...v
目錄...vi
表目錄...ix
圖目錄...x
第1章 緒論...1
1.1 研究背景...1
1.2 研究動機...2
1.3 文獻回顧...3
1.4 論文架構...5
第2章 EtherCAT 通訊原理介紹...6
2.1 EtherCAT之結構與組成...6
2.1.1 EtherCAT簡介...6
2.1.2 EtherCAT系統架構...6
2.1.3 EtherCAT之特色與優勢...7
2.2 EtherCAT之運作原理...8
2.3 EtherCAT主站架構...9
2.3.1 EtherCAT 封包傳輸格式...10
2.3.2 EtherCAT 定址方法...13
2.3.3 工作計數器...16
2.3.4 EtherCAT State machine...17
2.4 EtherCAT從站架構...20
2.4.1 EtherCAT 實體層...21
2.4.2 EtherCAT 資料連結層...22
2.4.3 EtherCAT 應用層...28
2.5 小結...32
第3章 運動學原理與分析...33
3.1 運動學...33
3.2 Denavit-Hartenberg(D-H) 連桿坐標系...33
3.3 正向運動學...35
3.4 反向運動學...36
3.4.1 幾何解法...37
3.5 小結...38
第4章 放電加工機節點控制器設計與實現...39
4.1 EtherCAT控制器之系統架構...39
4.2 EtherCAT控制器之硬體架構...40
4.2.1 馬達驅動電路...40
4.2.2 EtherCAT收發電路...41
4.2.3 電流回授電路...42
4.2.4 馬達編碼器回授...43
4.3 EtherCAT控制器之通訊協定...43
4.4 EtherCAT控制器設計與實現...46
4.4.1 控制器設計...46
4.4.2 控制器製作與實測...46
4.4.3 控制器實測結果討論...51
4.5 小結...52
第5章 加工產線網路系統整合之實現...53
5.1 加工產線之規劃...53
5.1.1 產線之建構規劃...53
5.1.2 加工流程與實測方式規劃...54
5.2 產線機具設備介紹...55
5.2.1 放電加工機介紹...56
5.2.2 六軸機械手臂介紹...56
5.2.3 自動光學檢測系統介紹...58
5.3 自動化產線網路系統整合與實測...59
5.3.1 放電加工機EtherCAT網路整合與實測...60
5.3.2 六軸機械手臂EtherCAT網路整合與實測...60
5.3.3 產線監控系統整合與實測...62
5.3.4 放電加工貫孔成果...66
5.4 小結...67
第6章 結論與未來展望...69
6.1 結論...69
6.2 未來展望...69
參考文獻...71
Extended Abstract...77
I. Introduction...79
II. EtherCAT Research...79
III. Kinematics principle and analysis...79
IV. Design and Implementation of EtherCAT Controller...80
V. Node controller area network system implementation and production line integration...82

[1]經濟部工業局航太產業發展推動小組(民 108 年 12 月 4 日)。發展現況,歷年航空產業產值,網路資料。民 109 年 3 月 29 日,取自:https://www.casid.org.tw/Page.aspx?ID=9e2d07e8-9f61-4e7a-8485-63b5dcd16dda
[2]陳志明(2014),工具機技術現況與發展趨勢,工業技術研究院報告。
[3]Y. Chen, H. Chien, M. Zhang, Y. Li, “The Relevant Research Of CoE Protocol In EtherCAT Industrial Ethernet”, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, pp. 67-70.
[4]V. Šetka and D. Tolar, "Motor controller designed for robotics based on microcontroller with integrated EtherCAT", 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, 2018, pp. 289-294.
[5]C. Zhou, J. Xu, Y. Jin, J. Mao and L. Xu , “Design of Servo Drive Slaves Based on EtherCAT”, 2015 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, 2015, pp. 5999-6004.
[6]G. Shuai, S. Zhuoyuan, W. Zhiyong and M. M. Islam, "Beckhoff based arm control system design for Elderly Assisting Robot", 2011 IEEE International Conference on Automation and Logistics (ICAL), Chongqing, 2011, pp. 1-5.
[7]Z. Liu, N. Liu, T. Zhang, L. Cui and H. Li, “EtherCAT Based Robot Modular Joint Controller”, 2015 IEEE International Conference on Information and Automation, Lijiang, pp. 1708-1713.
[8]G. Zhang, F. Ni, Z. Li and H. Liu, "A Control System Design for 7-DoF Light-weight Robot based on EtherCAT Bus", 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, 2018, pp. 2169-2174.
[9]W. Kim and M. Sung, “Scalable Motion Control System Using EtherCAT-based Shared Variables”, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, pp. 1-5.
[10]S. Park, H. Kim, H. Kim, C. Cho and J.Choi. (2017)“Synchronization Improvement of Distributed Clocks in EtherCAT Networks”, 2017 IEEE Communications Letters , 21(6), pp. 1277-1280.
[11]S. Park, H. Kim, H. Cho and J. Choi, “Development of EtherCAT Slave Based on Multi-Core DSP”, 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, pp. 157-161.
[12]R. Delgado, S. Kim, B. Jae and B. Choi, “An EtherCAT -based Real-time Motion Control System in Mobile Robot Application”, 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xi'an, pp. 710-715.
[13]I. Özcelik and K. Ovaz Akpinar, “A Standalone Gray-Box EtherCAT Fuzzer”, 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, pp. 1-5.
[14]C.wei and T.Yang,“Trajectory Optimization of Painting Robot and Experimental for Free-form Surfaces”, in 2015 Chinese Chinese Automation Congress(CAC), 2015, pp. 453-456.
[15]M. Ramadiansyah, W. Wahab, Nasril, “Modelling, Simulation and Control of a High Precision Loading-Unloading Robot for CNC Milling Machine”, 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering, Nusa Dua, pp. 204-208.
[16]A. Atmosudiro, M. Keinert, A. Karim, A. Lechler, A. Verl and A. Csizar, “Productivity Increase through Joint Space Path Planning for Robot Machining”, 2014 European Modelling Symposium, Pisa, pp. 257-262.
[17]T. Kubela, A. Pochyly and V. Singule, “Assessment of Industrial Robots Accuracy in relation to Accuracy Improvement in Machining Processes”, 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, pp. 720-725.
[18]K. Watanabe, F. Nagata, K. Nakamura and A. Otsuka, “Robot Arm without Using Robot Language and Its Application to Machining Process”, 2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM), Yogyakarta, pp. 97-101.
[19]T. Kubela, A. Pochyly and V. Singule, “High Accurate Robotic Machining based on Absolute Part Measuring and On-line Path Compensation”, 2019 International Conference on Electrical Drives & Power Electronics (EDPE), The High Tatras, pp. 143-148.
[20]S. Huang, Z. Zhu, J. Chen and X. Zhou, “Target Force Tracking and Automatic Contour Surface Processing in Grinding of Industrial Robots”, 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, pp. 188-195
[21]M. Maťuga, “Control and positioning of robotic arm on CNC cutting machines and their applications in industry”, 2018 Cybernetics & Informatics (K&I), Lazy pod Makytou, 2018, pp.1-6
[22]J. Lee, G. Park, J. Shin and J. Woo, “Industrial Robot Calibration Method using Denavit – Hatenberg Parameters”, 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, pp. 1834-1837.
[23]M. Bin, F. Xie, X. Liu and H. Li, “Calibration of a 6-DOF ,ndustrial Robot Considering the Actual Mechanical Structures and CNC System”, 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, pp. 6-10.
[24]F. Lopez, J. Abbenseth, C. Henkel and S. Dörr, “A Predictive Online Path Planning and Optimization Approach for Cooperative Mobile Service Robot Navigation in Industrial Applications”, 2017 European Conference on Mobile Robots (ECMR), Paris, pp. 1-5.
[25] EtherCAT Technology Group, “ETG. 2200 Slave Implementation Guide V3.1.0”, Nov 16, 2018
[26] EtherCAT Technology Group。Technology Overview。民 109 年 4 月 03 日,取自:
https://www.ethercat.org/cn/technology.html
[27]EtherCAT Technology Group, “EtherCAT The Ethernet Fieldbus”, ETG, 2009
[28]湯皓昀,“以 EtherCAT 實現 CNC 先進伺服運動控制設計之關鍵技術”, 國立交通
大學電機與控制工程系, 碩士論文, 2015
[29]鄧義霖,“具備 EtherCAT 之低工耗智慧機械感測系統設計與實現”, 國立虎尾科技大學資
訊工程系, 碩士論文, 2019
[30]Beckhoff Information System-English。EtherCAT Distrbuted Clock。民 109 年 2 月19日,取自:https://infosys.beckhoff.com/english.php?content=../content/1033/ethercatsystem/2469118347.html&id=5142598304987524894
[31]Il-Kyun Jung and Sun Lim, "An EtherCAT based Real-time Centralized Soft Robot Motion Controller", International Conference on Instruments and Measurements, Sensor Network and Automation 2012, INSNA 2012
[32]EtherCAT Technology Group, “ETG.1500 Master Classes V1.0.2”, ETG, May 19, 2016
[33]EtherCAT Technology Group, “Slave Controller Section I – Technology”, ETG, Jul 07, 2014
[34]EtherCAT Technology Group, “ETG. 1000 EtherCAT Specification V1.0.4”, ETG, Sep 15, 2017
[35]EtherCAT Technology Group, “EtherCAT Communication Principles”, ETG, Fed 04, 2008
[36]EtherCAT Technology Group, “Slave Controller Section II-Register Description”, ETG, Jul 07, 2014
[37]EtherCAT Technology Group, “ETG. 1000.6 EtherCAT Specification Part6:Application layer protocol specification”, ETG, Sep 15, 2017
[38]EtherCAT Technology Group, “ETG. 1000.2 EtherCAT Specification Part2:Physical layer service and protocol specification”, ETG, Sep 15, 2017
[39]EtherCAT Technology Group, “ETG. 1000.4 EtherCAT Specification Part4:Data link layer protocol specification”, ETG, Sep 15, 2017
[40]EtherCAT Technology Group, “ETG. EtherCAT Communication Principles”, ETG, Feb 24, 2008
[41]EtherCAT Technology Group, “ETG. EtherCAT Communication Principles”, ETG, Dec 10, 2018
[42]EtherCAT Technology Group, “ETG. 1000.5 EtherCAT Specification Part5:Application layer service definition”, ETG, Sep 15, 2017
[43]王柏閔,“具 EtherCAT 通訊協定之高功率高速直流無刷馬達驅動器研製”, 國立雲林
科技大學電機工程系, 碩士論文, 2019
[44]Coursera 線上學習網站(2012 年 4 月)。機器人學一(Robotics(1)),林沛群,網路資料。
民 109 年 2 月 21 日,取自:https://www.coursera.org/learn/robotics1
[45]吳仁豪, 游凱安, “工業用六軸機械手臂”, 國立台灣科技大學電機工程系, 專題技術
報告, 104 年 06 月, pp. 11-15.
[46]江鎮谷,“以機械手臂視角為基礎之筷管進料檢測系統研發”, 國立雲林科技大學電機工程系, 碩士論文, 2019
[47]許哲菘,“網際六軸機械臂系統的逆運動學分析與模擬”, 國立虎尾科技大學機械與機電工程系, 碩士論文, 2010
[48]EtherCAT Technology Group。EtherCAT Device Protocol,ETG,網路資料。民 109 年
3 月 24 日,取自:https://www.ethercat.org/download/documents/EtherCAT_Device_Protocol_Poster.pdf
[49]HIWIN, “Articulated Robot -RA605-GB, RT605-GB(Original Instruction) User Manual”, HIWIN, Nov, 2019
[50]ITRead。“機器人理論(4)逆向運動學:已知物體位置反推關節軸角度”,ITRead,網
路資料。民 109 年 1 月 20 日,取自:https://www.itread01.com/content/1544542588.html
[51]Renesas Electronics, “RX72M Group User’s Manual: Hardware”, Renesas Electronics Corporation, May. 2019.
[52]東元精電股份有限公司,“交流伺服系統”,東元精電股份有限公司,6 月,2016。
[53]何御瑋,“應用於工具機網路之智能控制器研製與產線整合”, 國立虎尾科技大學飛
機工程系, 碩士論文, 2020
[54]TAMAGAWA SEIKI CO,“ROTARY ENCODERS FA-CODER”, TAMAGAWA SEIKI
CO, September, 2018.
[55]MITSUBISHI ELECTRIC, “Dual-In-Line Package Intelligent Power Module”,
MITSUBISHI ELECTRIC, March 2014.
[56]Cia DS402, “Canopen Device Profile Drive and Motion Control”, Cia DS402 , Version 3.0, Dec. 14, 2007.
[57]游仕庭,“具CANopen通訊協定之X-Y平台同動控制系統設計與研製”, 國立雲林科技大學電機工程系, 碩士論文, 2019
[58]SERVOTRONIX, “EtherCAT and CANopen Reference Manual CDHD Servo Drive”, SERVOTRONIX, Jan 05, 2017
[59]SANYO DENKI, “SANMOTION AC SERVO SYSTEMS R ADVANCED MODEL
TYPE S With EtherCAT Interface Type H Instruction Manual”, SANYO DENKI,
September 2017.
[60]MICRO RESEARCH。 “微納製造及自動化”, MICRO RESEARCH,網路資料。民
109 年 5 月 25 日,取自:http://www.wxmr.com/product.aspx?id=126
[61]J. Downs and K. Landls, “TURBINE COOLING SYSTEMS DESIGN – PAST, PRESENT
AND FUTURE”, Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air
GT2009, Orlando Florida, pp. 1-10.
[62]維基百科, “放電加工”, 維基百科, 線上檢索日期:2020 年 5 月 31 日。
https://zh.wikipedia.org/wiki/%E7%94%B5%E7%81%AB%E8%8A%B1%E5%8A%A0%E5%B7%A5
[63]中華科技大學機械系, “非傳統加工”, 藍祥耀,線上檢索日期:2020 年 6 月 2 日
http://cc.cust.edu.tw/~lan/specific_manufacturing/ch2_EDM.pdf
[64]MOLODMASTER, “放電加工機”, MOLODMASTER,線上檢索日期:2020 年 6 月 2 日
http://www.yawjet.com/zh-TW/category/A_die_sinking_edm.html
[65]Arrow,“KSZ8081MNX-EVAL, Evaluation Board for the KSZ8081MNX 10Base-T/100Base-TX Physical Layer Transceiver”, Arrow,線上檢索日期:2020 年 6 月 3 日
https://www.arrow.com/en/reference-designs/ksz8081mnx-eval-evaluation-
board-for-the-ksz8081mnx-10base-t100base-tx-physical-layer-transceiver/b7a1e4df20b178927b6c8bbe98f23bb3
[66]RENESAS,“EK-RA6M3v1-Design Packge”, RENESAS,線上檢索日期:2020 年
6 月 3 日 https://www.renesas.com/tw/zh/software/D6003936.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top