跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何明修
研究生(外文):HO, MING-HSIU
論文名稱:助熔劑混合對於(Y0.997Pr0.003)InGe2O7螢光粉之結構與光致發光特性研究
論文名稱(外文):The studies on the structure and photoluminescence properties for (Y0.997Pr0.003)InGe2O7 phosphor mixed with fluxes
指導教授:張益新
指導教授(外文):CHANG, YEE-SHIN
口試委員:張益新陳皓隆蔡木村張莉毓
口試委員(外文):CHANG, YEE-SHINCHEN, HAO-LONGCAI, MU-CUNJHANG, LI-YU
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:148
中文關鍵詞:螢光粉固態反應法YInGe2O7助熔劑摻雜
外文關鍵詞:PhosphorSolid-state reactionYInGe2O7FluxDoped
相關次數:
  • 被引用被引用:1
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用固態反應法製備鍺酸鹽YInGe2O7作為螢光粉主體,固定摻雜稀土金屬元素Pr3+離子濃度0.3mol%當作發光中心,本研究探討助熔劑的添加及共摻對於合成螢光粉體顆粒大小及其光致發光特性之影響。主要分為三個系列分別為:(一) YInGe2O7摻雜不同濃度Pr3+螢光粉找出最接近白光之實驗;(二) YInGe2O7固定摻雜Pr3+濃度0.3mol%螢光粉並且添加不同重量百分比的助熔劑;(三) YInGe2O7固定摻雜Pr3+濃度0.3mol%螢光粉且利用共摻方式作為助熔劑合成粉體。添加所選用的助熔劑包括Li2CO3、Na2CO3及K2CO3,而共摻所選用的助熔劑包括H3BO3及Bi2O3。本實驗將氧化物原料與助熔劑混合後,在大氣中以1250℃煆燒12小時,而添加助熔劑則是先完成YInGe2O7:Pr3+螢光粉體後利用重量百分比來添加助熔劑,以1000℃煆燒1小時進行熱處理,探討助熔劑對於螢光粉之晶體結構影響以及光致發光性質,期許藉由助熔劑的應用開發出新穎白光LED螢光粉材料。
由X-射線繞射分析(X-ray diffraction,縮寫為XRD)分析結果顯示,YInGe2O7摻雜不同濃度Pr3+螢光粉和共摻助熔劑,以1250℃煆燒12小時的條件下,可得到單一相的Monoclinic單斜晶系YInGe2O7之結晶結構,可形成固溶體,當使用添加方式合成時都皆有二次相的產生,其繞射峰皆屬單一相之YInGe2O7 : Pr3+結構由實驗中可得知過多的添加量會致使第二相的生成。而共摻H3BO3及Bi2O3助熔劑螢光粉體中,其晶體表面型態有明顯得到改善,從實驗得知共摻微量的H3BO3及Bi2O3助熔劑,確實有提升螢光粉體的結晶性,但添加Li2CO3、Na2CO3及K2CO3助熔劑,其晶體表面型態皆呈現不規則的菱角狀,導致發光特性降低。
在YInGe2O7:Pr3+螢光粉粉體中,光致發光主要有兩種機制:(一)間接激發發光;(二)直接激發發光。在263 nm紫外光激發下,放射光譜是由主體本身發光及Pr3+離子的3P0→3H4,5,6和1D2→3H4電子躍遷所構成,發光波緞分佈於350 ~ 480 nm、480 ~ 520 nm、530 ~ 570 nm、580 ~ 620 nm、620 ~ 650 nm範圍中。隨著Pr3+離子摻雜量的提高,發光峰位於604 nm強度為最強,則屬於Pr3+離子的1D2→3H4電子躍遷,當摻雜Pr3+離子濃度達0.3 mol%時,呈現最接近白光放射,其CIE色度座標為(x= 0.313,y= 0.245)。在YInGe2O7固定Pr3+濃度0.3mol%的情況下,添加不同重量百分比Li2CO3、Na2CO3及K2CO3助熔劑觀察出,在激發波長263 nm 激發下,從放射光譜顯示,隨著Li2CO3、Na2CO3及K2CO3助熔劑添加量的提高,放射峰皆呈現下降的趨勢;另外YInGe2O7固定Pr3+濃度0.3mol%的情況下,共摻不同濃度H3BO3及Bi2O3助熔劑,在激發波長263 nm 激發下,從放射光譜顯示,H3BO3及Bi2O3助熔劑皆有提升YInGe2O7:Pr3+螢光粉之作用,當H3BO3摻雜至7 mol%時有最大的強度,呈現出橘紅光放射其,CIE色度座標為(x= 0.5864,y= 0.335);而Bi2O3摻雜濃度為1 mol%時有最佳的發光強度,CIE色度座標為(x= 0.247,y= 0.269),但Bi2O3摻雜濃度3 mol%時,呈現最接近白光放射,其CIE色度座標為(x= 0.321,y= 0.306)。

In this study, the germanium salt YInGe2O7 was prepared using the solid-state reaction method as the phosphor body, and the fixed doping rare earth metal element Pr3+ ion concentration 0.3mol% was used as the luminescence center. Mainly divided into three series: (1) YInGe2O7 doped with different concentrations of Pr3+ phosphor to find the closest white light experiment;(2)YInGe2O7 fixed Pr3+ concentration doped of 0.3 mol% phosphor powder and added different weight percentage of fluxes; (3) YInGe2O7 fixed doping Pr3+ concentration 0.3 mol% phosphor powder and using co-doping method as flux to synthesize powder. Adding selected fluxes include Li2CO3, Na2CO3 and K2CO3, while co-doping selected fluxes include H3BO3 and Bi2O3, respectively. In this experiment, after mixing the oxide raw materials with the flux, it is calcination at 1250 °C for 12 h in the atmosphere, and the addition of the flux is to complete the YInGe2O7: Pr3+ phosphor powder and then use the weight percentage to add the flux at 1000 Burned for 1 hour for heat treatment to discuss the effect of flux on the crystal structure of phosphor and photoluminescence properties. It is hoped that a new white LED phosphor material will be developed through the application of flux.
X-ray diffraction analysis (X-ray diffraction, abbreviated as XRD) analysis results show that YInGe2O7 doped with different concentrations of Pr3+ phosphor powder and co-doped flux can be burned at 1250 °C for 12 h to obtain a single The monoclinic monoclinic YInGe2O7 crystal structure of the phase can form a solid solution. When synthesized by the addition method, all secondary phases are generated, and the diffraction peaks are all single-phase YInGe2O7: The Pr3+ structure is experimentally available. It is known that excessive addition will cause the formation of the second phase. In the phosphor powder of co-doped H3BO3 and Bi2O3 fluxes, the crystal surface morphologies have been significantly improved. It is known from the experiment that the co-doping of trace amounts of H3BO3 and Bi2O3 fluxes does improve the crystallinity of the phosphor, but with the addition of Li2CO3, Na2CO3 and K2CO3 fluxes, the crystal surface morphologies showed irregular rhombuses. From the experiment, it was found that the irregular particle size will lead to a decrease in luminescence characteristics.
In YInGe2O7: Pr3+ phosphor, there are two main mechanisms of photoluminescence: (1) indirect excitation light emission; (2) direct excitation light emission. Under the excitation of 263 nm ultraviolet light, the emission spectrum is composed of the luminescence of the host itself and the 3P0→3H4,5,6 and 1D2→3H4 electron transitions of Pr3+ ions. 530 ~ 570 nm, 580 ~ 620 nm, 620 ~ 650 nm. With the increase of the doping amount of Pr3+ ions, the emission peak is located at 604 nm. The intensity is the strongest, and the 1D2→3H4 electron transition belongs to Pr3+ ions. When the concentration of doped Pr3+ ions reaches 0.3 mol%, it presents the closest to white light emission, and its CIE chromaticity coordinates are (x=0.313, y=0.245). In the case of YInGe2O7 fixed Pr3+ concentration of 0.3 mol%, adding different weight percentages of Li2CO3, Na2CO3 and K2CO3 flux was observed. Under the excitation wavelength of 263 nm, the emission spectra showed that with the addition of Li2CO3, Na2CO3 and K2CO3 flux the increase of the emission peak shows a downward trend; in addition, YInGe2O7 fixed Pr3+ concentration of 0.3mol%, co-doped with different concentrations of H3BO3 and Bi2O3 flux, under the excitation wavelength of 263 nm, the emission spectrum shows that H3BO3 and Bi2O3 has the effect of enhancing YInGe2O7: Pr3+ phosphor powder. When H3BO3 doped is 7 mol%, it has the maximum intensity, showing orange-red light emitting. The CIE chromaticity coordinates are (x= 0.5864, y= 0.335); and the Bi2O3 doping concentration of 1 mol% has the best luminous intensity, and the CIE chromaticity coordinates are (x= 0.247, y= 0.269). It presents the closest white light emission with coordinates of (x= 0.321, y= 0.306) when the Bi2O3 doping concentration is 3 mol%.

摘要…i
Abstract…iii
誌謝…v
目錄…vi
表目錄…xi
圖目錄…xii
緒論…1
1-1前言…1
1-2 YInGe2O7主體晶格介紹…2
1-3 研究動機與目的…2
第二章 理論基礎與文獻回顧…5
2-1 螢光材料發光原理…5
2-1-1螢光與磷光之關係…5
2-1-2激發源的種類與應用…6
2-1-3組態座標 (configuration coordination)…7
2-1-4 史托克位移(stokes shift) [14,20]…7
2-1-5 能量轉移 (energy transfer)…8
2-1-6 電子-聲子交互作用(electron-phonon interaction)…8
2-2 螢光材料種類[24]…8
2-2-1 有機螢光材料…9
2-2-2 無機發光材料…9
2-2-3半導體發光材料…10
2-3固態材料中的光致發光…10
2-3-1本質型發光 (intrinsic luminescence)…10
2-3-1-1 能帶發光 (band-to-band luminescence)…11
2-3-1-2 激子發光 (exciton luminescence)…11
2-3-1-3 交叉發光 (cross-luminescence)…11
2-3-2外質型發光 (extrinsic luminescence)…11
2-3-2-1 非侷限型(unlocalized type)…12
2-3-2-2侷限型(localized type)…12
2-4 影響發光之因素…13
2-4-1 主體晶格效應 (host lattice effect) [2,30,31]…13
2-4-2電子雲膨脹效應(Nephelauxetic effct) [2,35]…13
2-4-3毒劑現象 (poisoning)…14
2-4-4 濃度淬滅 (concentration quenching) [37-39]…14
2-4-5 熱消淬效應 (thermal quenching)…14
2-4-6 補償效應(offset effect)…15
2-4-7 光游離效應(photoionization effect) [41,42]…15
2-5 稀土金屬離子的發光特性[43]…15
2-6螢光體的組成與設計[44]…16
2-7鍺酸鹽YInGe2O7晶體簡介…17
2-8 助熔劑[60]…17
第三章 實驗方法與步驟…38
3-1 實驗流程…38
3-2 起始材料…38
3-3 成分與結構分析…39
3-3-1 X光繞射 (X-ray diffraction analysis, XRD)分析…39
3-3-2 場發射掃描式電子顯微鏡 (field emission scanning electron microscopy, FE-SEM)分析…39
3-4 螢光粉體之光學特性分析…39
3-4-1 吸收光譜 (absorption spectrum)…39
3-4-2 螢光光譜儀 (photoluminescence, PL)特性量測…39
3-4-3 化學分析電子能譜儀 (electron spectroscope for chemical analysis ,ESCA) …40
3-4-4 CIE色度座標分析 (analysis of C.I.E chomaticity diagram)…40
第四章 結果與討論 …45
4-1 以固態反應法合成YInGe2O7:Pr3+螢光材料 …45
4-1-1 YInGe2O7:Pr3+ 螢光粉之XRD結構分析…45
4-1-2 掃描式電子顯微鏡(SEM)表面形態分析…45
4-1-3吸收光譜分析…46
4-1-4 YInGe2O7:Pr3+螢光粉之激發光譜分析…46
4-1-5 YInGe2O7:Pr3+螢光粉之放射光譜分析…47
4-1-6衰減時間 (decay time)分析…47
4-1-7 CIE色度座標…48
4-1-8結論…48
4-2以固態反應法合成(Y0.997Pr0.003)InGe2O7螢光粉添加Li2CO3助熔劑…60
4-2-1添加Li2CO3助熔劑之XRD結構分析…60
4-2-2 掃描式電子顯微鏡(SEM)表面形態分析…60
4-2-3吸收光譜分析…60
4-2-4 添加Li2CO3助熔劑之激發光譜分析…61
4-2-5 添加Li2CO3助熔劑之放射光譜分析…61
4-2-6 CIE色度座標…62
4-2-7結論…62
4-3以固態反應法合成(Y0.997Pr0.003)InGe2O7螢光粉添加Na2CO3助熔劑…72
4-3-1添加Na2CO3助熔劑之XRD結構分析…72
4-3-2 掃描式電子顯微鏡(SEM)表面形態分析…72
4-3-3吸收光譜分析…72
4-3-4 添加Na2CO3助熔劑之激發光譜分析…73
4-3-5 添加Na2CO3助熔劑之放射光譜分析…73
4-3-6 CIE色度座標…74
4-3-7結論…74
4-4以固態反應法合成(Y0.997Pr0.003)InGe2O7螢光粉添加K2CO3助熔劑…84
4-4-1添加K2CO3助熔劑之XRD結構分析…84
4-4-2 掃描式電子顯微鏡(SEM)表面形態分析…84
4-4-3吸收光譜分析…84
4-4-4 添加K2CO3助熔劑之激發光譜分析…85
4-4-5 添加K2CO3助熔劑之放射光譜分析…85
4-4-6 CIE色度座標…86
4-4-7結論…86
4-5以固態反應法合成(Y0.997Pr0.003)InGe2O7螢光粉共摻H3BO3助熔劑…96
4-5-1共摻H3BO3助熔劑之XRD結構分析…96
4-5-2 掃描式電子顯微鏡(SEM)表面形態分析…96
4-5-3吸收光譜分析…96
4-5-4共摻H3BO3助熔劑之激發光譜分析…97
4-5-5共摻H3BO3助熔劑之放射光譜分析…97
4-5-6共摻H3BO3之ESCA分析…98
4-5-7衰減時間 (decay time)分析…99
4-5-8 CIE色度座標…99
4-5-9結論…100
4-6以固態反應法合成(Y0.997Pr0.003)InGe2O7螢光粉共摻Bi2O3助熔劑…113
4-6-1共摻Bi2O3助熔劑之XRD結構分析 …113
4-6-2 掃描式電子顯微鏡(SEM)表面形態分析…113
4-6-3吸收光譜分析…113
4-6-4共摻Bi2O3助熔劑之激發光譜分析…114
4-6-5共摻Bi2O3助熔劑之放射光譜分析…114
4-6-6共摻Bi2O3之ESCA分析…115
4-6-7衰減時間 (decay time)分析…115
4-6-8 CIE色度座標…116
4-6-9結論…116
4-7以固態反應法合成(Y0.997Pr0.003)InGe2O7螢光粉混合不同助熔劑之比較…131
4-7-1 (Y0.997Pr0.003)InGe2O7螢光粉添加助熔劑方式以激發波長263nm之比較…131
4-7-2 (Y0.997Pr0.003)InGe2O7螢光粉共摻助熔劑方式以激發波長263nm之比較…131
第五章 總結論…133
參考文獻 …138
Extended Abstract…142


[1]劉如熹、王健元、石景仁,2001年8月,“白光發光二極體之螢光粉材料介紹”,光訊第91期,p.30。
[2]劉如熹、劉宇桓,2006年,“發光二極體用氮氧螢光粉介紹”,全華科技,台北。
[3]S. Shionoya and W. M. Yen, 1999, “Phosphor Handbook”, CRC press, Boca Raton.
[4]W. T. Hsu, W. H. Wu, C. H. Lu, 2003, “Syathesis and luminescence properties of nano-sized Y3Al5O12:Eu3+ phosphor ”, Mater. Sci. Eng. B, 104, 40-44.
[5]S. D. Han, S. P. Khatkar, V. B. Taxak, G. Sharma, D. Kumar, 2006, “Synthesis, luminescence and effect heat treatment on the properties of Dy3+-doped YVO4 phospoh”, Mater. Sci. Eng. B, 129, 126.
[6]Y. C. Li, Y. H. Li, Y. F. Lin, Y. S. Chang, Y. J. Lin, 2007, “Synthesis and luminescent properties of Ln3+( Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germinate LaAlGe2O7 phosphor”, J. Alloy. Compd. 439, 367.
[7]項鈺軒,民國100年,“以溶膠-凝膠法製備BaY2-xLaxZnO5:Eu3+ (x=0~0.36)螢光粉及其光致發光性質研究”,國立虎尾科技大學光電與材料科技研究所碩士論文。
[8]戴品綸,民國98年,“Y1-xInGe2O7:Mx3+(M = Bi, Sm, Er, Dy)之合成與光致發光特性研究”,國立虎尾科技大學光電與材料科技研究所碩士論文。
[9]E. A. Juarez-Arellano, L. Bucio, J. L. Ruvalcaba, R. Moreno-Tovar, J. F. Garcia- Robledo, and E. Orozco, 2002, “The crystal structure of InYGe2O7 germanate”, Z. Kristall., 217 , 201.
[10]林暉然,民國95年,“鍺酸鹽YxInGe2O7:R1-x(R=Eu, Tb, Tm)之螢光特性研究”,國立成功大學材料科學及工程學系碩士論文,pp11~42。
[11]G. S. R. Raju, J. Y. Park, H. C. Jung, R. Balarkrishnaiah, B. K. Moon, and J. H. Jeong, 2011, “Synthesis, structural and luminescent properties of Pr3+ activated GdAlO3 phosphors by solvothermal reaction method”, Curr. Appl. Phys., 11, S292-S295.
[12]Shinji Okamoto and Hajime Yamamoto, 2002, “Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion”, J. Appl. Phys, 91, 5492.
[13]J. A. Deluca, 1994, “An Introduction to Luminescence Materials”, Springer Verlag, New York, p.13.
[14]D. R. Vij, 1998, “Luminescence in Solids”, Plenum press, New York.
[15]H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, 2004, “Photoluminescence of YVO4:Tm phosphor prepared by a polymerizable complex method”, Solid State Commun., 132, 527–531.
[16]柯以侃、吳明珠,民國92年6月,“儀器分析”,新文京開發出版有限公司。
[17]劉如熹、劉宇桓,2006年,“發光二極體用氧氣螢光粉介紹”,全華科技。
[18]Lyuji, Ozawa, 1990, “Cathodoluminescence”, Kodansha Ltd, Tokyo.
[19]P. Goldberg, 1996, “Luminescence of Inorganic Solids”, Acadamic Press Inc, New York.
[20]蔡濱祥,民國94年,“尖晶石(MgxZn1-x)(In2-yGay)O4:Eu3+,Tb3+螢光粉體制備及其光致發光特性研究”,國立成功大學材料科學及工程學系博士論文。
[21]G. Blasse and B.C. Grabmaier,1991 , “Luminescence Materials”, Springer Verlag, Berlin Heidelberg, p.245.
[22]A. H. Kitai, 1993, “Solid State Luminescence”, Chapman & Hall press, Cambridge.
[23]方客川,2001年,“固態光譜學”,中國科技大學出版社,中國。
[24]楊俊英著,民國81年,“電子產業用螢光材料之應用調查”,工研院。
[25]N. I. Meyer and F. P. Jeasen, 1996, “Hot electron from silicon p-n junctions produced by ion implantation”, J. Appl. Phys, 37 (11), 4297.
[26]S. Tanimizu, 1999, “Luminescence center of ns2-type ions”, Phosphor Handbook, CRC press, Florida, 141-152.
[27]M. Tamatani, 1999, “Luminescence center of transition metal ions”, Phosphor Handbook, CRC press, Florida, 153-176.
[28]M. Morita, 1999, “Luminescence centers of complex ions, Phosphor Handbook”, CRC press, Florida, 201-212.
[29]T. Kano, 1999, “Luminescence centers of rare-earth ions, Phosphor Handbook”, CRC press, Florida, 177-200.
[30]江建志,民國98年,“鈰活化石榴石系列螢光粉體結構與特性”,國立成功大學材料科學及工程學系博士論文。
[31]李育群,民國96年,“鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究”,國立成功大學材料科學及工程學系博士論文。
[32]A. Putnis, 1992, “Introduction to mineral science”, Cambridge University Press, New York.
[33]周公度,段連運著,1997年,“結構化學基礎”,淑馨出版社, p.221。
[34]B. Henderson and G. F. Imbusch, 1989, “Optical spectroscopy of inorganic solids”, Clarendon Press, Oxford, p.68-77.
[35]C. K. Jorgensen, 1960, “Absorption spectra and chemical bonding in complexes”, Pergamon Press, Oxford, p.352.
[36]J. A. Deluca, 1960, “An Introduction to Luminescence in Inorganic Solids”, J. Chem Educ., 57(8), 541-545.
[37]林育鋒,民國95年,“硫化物半導體Ba2ZnS3為基質之螢光粉體製備及其光致發光特性研究”,國立成功大學材料科學及工程學系博士論文。
[38]S. Kuboniwa, H. Kawain and T. Hoshima, 1980, “Cathodoluminescence Saturation and Decay Characteristics of ZnS:Cu,Al Phosphor”, Jpn. J. Appl. Phys., 19, 1647.
[39]M. Tabei, S. Shionoya and H. Ohmatsu, 1975, “Mechanism of the Killer Effect of Iron-Group Ions on the Green Luminescence in ZnS:Cu,Al phosphors”, Jpn. J. Appl. Phys., 14, 240-247.
[40]C. H. Liang, Y. C. Chang, Y. S. Chang, 2009, “Enhancement of Luminescence Properties by Sr2+ Substituting Ba2+ in Red-Emitting Phosphors: Ba1−ySryLa2−xZnO5:xEu (x = 0-1, y = 0-0.7)”, J. Electr. Soc., 156 (10), J303-J307.
[41]G. Blasse, W. Schipper and J. J. Hamelink, 1991, “On the quenching of the luminescence of the trivalent cerium ion”, Inorg. Chim. Acta, 189, 77.
[42]G. Blasse, C. de Mello Donega, N. Efryushina, V. Dotsenko and I. Berezovskaya, 1994, “Luminescence of Pr3+ in indium borate (InBO3)”, Solid State Commun., 92(8), 687.
[43]G. Blasse, 1979, Handbook on the Physics and Chemistry of Rare Earths, Vol.4, North-Holland, p.237.
[44]R. C. Ropp, 1991, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherland, Chapter 8.
[45]L. Ge, M. Xu, H. Fang, 2006, “Synthesis and characterization of the Pd/InVO4-TiO2 co-doped thin films with visible light photocatalytic activities”Appl. Surf. Sci., 253, 2257-2263.
[46]Y. S. Chang, H. J. Lin, Y. C. Li, Y. L. Chai, and Y. Y. Tsai, 2007, “Synthesis and luminescent properties of Tb3+ -activated yttrium indium germinate phosphor”, J. Solid State Chem., 180, 3076-3077.
[47]H. E. Hoefdraad and G. Blasse, 1975, “Green emitting praseodymium in calcium zirconate”, Phys. Stat. Sol. (a), 29, K95.
[48]C. D. M. Donega, A. Meijerink and G. Blasse, 1995, “Non-radiative relaxation processes of the Pr3+ion in solids”, J. Phys. Chem. Solids, 56, 673-685.
[49]P. Dorenbos, 2000, “The transitions of the trivalent lanthanides in halogenides and chalcogenides”, J. Lumines., 91.
[50]N. Kristianpoller, A. Shmilevich, D. Weiss, R. Chen and N. Khaidukov, 2001, “Luminescence of LiKYF5:Pr3+ crystals”, Radiat. Meas., 33, 637-640.
[51]Jinyong Kuang and Yingliang Liu, 2006, “Luminesence properties of a Pb2+ Activated long-afterglow phosphor”, J. Electrochem. Soc., 153, G245.
[52]V.B. Mikhailik, H. Kraus, D. Wahl, M.S. Mykhaylyk Studies of electronic excitations in MgMoO4, CaMoO4 and CdMoO4 crystals using VUV synchrotron radiation Phys. Status Solidi B, 242 (2005), p. R17
[53]R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, and H. von Seggern, 2001, “Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments”, Scr. Mater., 44, 1213-1217.
[54]G.Blasse and b.c Grabmaier,"Luminescent materials",Springer.Verlag Berlin Heidelberg(1994)28-29
[55]s.kubota, H.yamane, and m.shimada, "Luminescence properties of Gd1-xBiXTa7O19(0[56]S. K. and M. S.,“Crystal Structure and Luminescence in Rare Earth Ion or Bi3+ Doped Materials “,Handbook of Luminescence, Display Materials, and Device Volume 2 Inorganic Display Materials, American Scientific Publishers (2003) 435-437.
[57]E. Botcharovaa, M. Heilmaiera, J.Freudenbergera, G. Drewa, D. Kudashowb, U. Martinb, 2003, “Supersaturated solid solution of nibium in copper by mechanical alloying”, J. Alloy. Compd., 351, 119-125.
[58]D. Sarkar, M. C. Chu, S. J. Cho, Y. I. Kim, 2009, “Synthesis and Morphological Analysis of Titanium Carbide Nanopowder”, J. Am. Ceram. Soc., 92, 2877-2882.
[59]Joshua D. Sayre, Kris T. Delaney, Nicola A. Spaldin, 2012, “Interplay between strain and oxygen vacancies in lanthanum aluminate”, Mater. Sci., 1202.1431.
[60]P. M. Lambert, Mater. Res. Bull. 35, 383(2000).

電子全文 電子全文(網際網路公開日期:20250804)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊