(3.238.7.202) 您好!臺灣時間:2021/03/03 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳長勳
研究生(外文):WU, CHANG-HSUN
論文名稱:氧化鋅奈米柱吸附鈀奈米粒子之場發射元件特性分析
論文名稱(外文):Enhanced field emission properties of zinc oxide nanorods adsorbed with Pd nanoparticles
指導教授:楊勝州
指導教授(外文):YOUNG, SHENG-JOUE
口試委員:張守進姬梁文林建德
口試委員(外文):CHANG, SHOOU-JINNJI, LIANG-WENLAM, KIN-TAK
口試日期:2020-06-30
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:鈀奈米粒子氧化鋅奈米柱水熱法場發射
外文關鍵詞:Palladium nanoparticlezinc oxidenanorodshydrothermal methodfield emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅是一種用途廣泛且低成本的Ⅱ-Ⅵ族材料,氧化鋅奈米結構擁有抗高溫、形態可控性、高抗氧化性,低功函數且易於製備,是場發射顯示器件的良好材料。場發射應用通常要求具備部分以下特徵:低導通場,高電流密度,增強因子高,高場發射穩定性等。本研究利用鈀奈米粒子吸附於氧化鋅奈米柱表面上,來提升場發射特性。首先使用水熱法生長氧化鋅奈米柱,接著透過光還原,使鈀奈米粒子吸附於氧化鋅奈米柱表面上,最後通過熱退火的方式完成元件,透過各種儀器觀察其奈米結構表面形貌、元素含量、光學特性以及結晶性。研究結果發現,在純的氧化鋅奈米柱與鈀奈米粒子吸附氧化鋅奈米柱的場發射特性分析下,未照光的起始(Turn-on)電場分別為6.68(V/µm)和6.43(V/µm),而增強因子(β)分別為2546.69和5947.07。證明吸附鈀奈米粒子在氧化鋅奈米柱上可提升場發射元件特性。

Zinc oxide is a widely used and low-cost II-VI group material. The zinc oxide nanostructure has high temperature resistance, morphological controllability, high oxidation resistance, low work function and is easy to prepare. It is a good material for field emission display devices . Field emission applications usually require some of the following characteristics: low on-field, high current density, high enhancement factor, high field emission stability, etc.
In this study, the Palladium nanoparticles to enhance the field emission properties via adsorbed on the ZnO nanorods surface. The ZnO nanorods was grown by hydrothermal method, and the Palladium nanoparticles via photoreduction to adsorbed on the surface, final obtain the field emission element via thermal annealing.The surface morphology, element content, optical properties and crystallinity of the nanostructures were observed by Various instruments.
The results show the Turn-on fields are 6.68 and 6.43 (V/μm), while field enhancement factors (β) are 2546.69 and 5947.07 for the pure zinc oxide nanorods and Palladium nanoparticles adsorbed on zinc oxide nanorods. It is proved that the adsorption of Palladium nanoparticles on the zinc oxide nanorods enhances the characteristics of the field emission element.

摘要......i
Abstract......ii
誌謝......iii
目錄......iv
表目錄......vi
圖目錄......vii
第一章 緒論......1
1.1 前言......1
1.2研究動機......2
第二章 文獻回顧......4
2.1氧化鋅奈米材料簡介......4
2.1.1晶體結構......4
2.1.2氧化鋅奈米結構......6
2.2薄膜成核成長理論......8
2.3氧化鋅奈米結構之合成方式......9
2.3.1化學氣相沉積法(Chemical Vapor Deposition,CVD)......9
2.3.2熱蒸鍍法(Thermal evaporation)......10
2.3.3水溶液法 (Aqueous solution method)......11
2.3.4水熱法 (Hydrothermal method)......12
2.4電子場發射特性......14
2.4.1場發射理論......14
2.4.2 Fowler-Nordheim 方程式......17
第三章 實驗步驟與量測設備分析......19
3.1實驗室藥品......19
3.2使用儀器介紹......20
3.2.1場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope,FE-SEM)......20
3.2.2射頻磁控濺鍍系統(RF Magnetron Sputtering)......21
3.2.3能量散佈分析儀(Energy Dispersive Spectrometer,EDS)......23
3.2.4穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)......24
3.2.5 X射線繞射儀(X-ray diffraction,XRD)......25
3.2.6光致發光(Photoluminescence,PL)......27
3.2.7場發射量測系統 ( Field Emission measurement system )......28
3.3氧化鋅奈米柱實驗步驟......29
3.3.1玻璃基板清洗......30
3.3.2沉積氧化鋅晶種層......31
3.3.3氧化鋅奈米柱成長......32
3.3.4光還原鈀奈米粒子......34
3.3.5場發射量測......35
第四章 結果與討論......36
4.1氧化鋅奈米柱之材料分析......36
4.1.1氧化鋅奈米柱場發射電子顯微鏡分析......36
4.1.2鈀奈米粒子吸附氧化鋅奈米柱之能量散佈分析......39
4.1.3鈀奈米粒子吸附氧化鋅奈米柱之穿透式電子顯微鏡分析......40
4.1.4氧化鋅奈米柱之X光繞射分析......42
4.1.5氧化鋅奈奈米柱之光致發光分析......43
4.2場發射分析......44
4.2.1黑暗中之場發射分析......44
4.2.2照紫外光之場發射分析......46
4.2.3場發射之電流穩定度......47
第五章 結論......50
5.1結論......50
5.2未來展望......50
參考文獻......51
Exctended Abstract......55
[1]M. Ahmad, C. Pan, and J. Zhu, "Electrochemical determination of l-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode," Journal of Materials Chemistry, vol. 20, p. 7169, 2010.
[2]M. Ahmad, C. Pan, J. Iqbal, L. Gan, and J. Zhu, "Bulk synthesis route of the oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing capabilities," Chemical Physics Letters, vol. 480, pp. 105-109, 2009.
[3]G. Gao, Q. Xi, H. Zhou, Y. Zhao, C. Wu, L. Wang, et al., "Selectivity of quantum dot sensitized ZnO nanotube arrays for improved photocatalytic activity," Phys Chem Chem Phys, vol. 19, pp. 11366-11372, May 10 2017.
[4]K. Thirunavukkarasu and R. Jothiramalingam, "Synthesis and structural characterization of Ga-ZnO nanodisk/nanorods formation by polymer assisted hydrothermal process," Powder Technology, vol. 239, pp. 308-313, 2013.
[5]S.-J. Young and Y.-H. Liu, "High Response of Ultraviolet Photodetector Based on Al-Doped ZnO Nanosheet Structures," IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, pp. 1-5, 2017.
[6]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16, pp. R829-R858, 2004.
[7]Z. Fan and J. G. Lu, "Zinc Oxide Nanostructures Synthesis and Properties," 2005.
[8]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[9]F. Huang, J. Hou, Q. Zhang, Y. Wang, R. C. Massé, S. Peng, et al., "Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer," Nano Energy, vol. 26, pp. 114-122, 2016.
[10]Y. Feng, L. Liu, S. Hu, Y. Ren, Y. Liu, J. Xiu, et al., "Four-photon-excited fluorescence resonance energy transfer in an aqueous system from ZnSe:Mn/ZnS quantum dots to hypocrellin A," Opt Express, vol. 24, pp. 19627-37, Aug 22 2016.
[11]Y. Zhang, Z. Cui, Y. Ding, and T. Liu, "Density functional theories study on optoelectronic properties of arsenic-doped GaN nanowires," Optical and Quantum Electronics, vol. 48, 2016.
[12]T. Premkumar, Y. S. Zhou, Y. F. Lu, and K. Baskar, "Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition," ACS Appl Mater Interfaces, vol. 2, pp. 2863-9, Oct 2010.
[13]R. Wen, L. Wang, X. Wang, G.-H. Yue, Y. Chen, and D.-L. Peng, "Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films," Journal of Alloys and Compounds, vol. 508, pp. 370-374, 2010.
[14]M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, "Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, pp. 963-970, 2001.
[15]J. Wu and L. Y. Lin, "Ultrathin (<1 mum) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper," Sci Rep, vol. 7, p. 43898, Mar 07 2017.
[16]F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, et al., "Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods," Sensors and Actuators B: Chemical, vol. 241, pp. 895-903, 2017.
[17]M. Elias, M. K. Amin, S. H. Firoz, M. A. Hossain, S. Akter, M. A. Hossain, et al., "Microwave-assisted synthesis of Ce-doped ZnO/CNT composite with enhanced photo-catalytic activity," Ceramics International, vol. 43, pp. 84-91, 2017.
[18]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., "Room-Temperature Ultraviolet Nanowire Nanolasers," SCIENCE, vol. 292, pp. 1897-1899, 2001.
[19]S.-J. Chang, B.-G. Duan, C.-H. Hsiao, C.-W. Liu, and S.-J. Young, "UV Enhanced Emission Performance of Low Temperature Grown Ga-Doped ZnO Nanorods," IEEE Photonics Technology Letters, vol. 26, pp. 66-69, 2014.
[20]A. A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, and M. Taghizadeh, "Silver nanoparticles decorated carboxylate functionalized SiO2 , New nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide," Electrochimica Acta, vol. 214, pp. 208-216, 2016.
[21]C.-L. Hsu, L.-F. Chang, and T.-J. Hsueh, "A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate," RSC Adv., vol. 6, pp. 74201-74208, 2016.
[22]B.-R. Huang, W.-C. Ke, Y.-H. Peng, and R.-H. Liou, "Low temperature annealing effect on photoresponse of the bilayer structures of ZnO nanorod/nanodiamond films based on ultraviolet photodetector," Thin Solid Films, vol. 605, pp. 243-247, 2016.
[23]J. Luo, A. Quan, C. Fu, and H. Li, "Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure," Journal of Alloys and Compounds, vol. 693, pp. 558-564, 2017.
[24]J. Wang, X. Wei, and P. Wangyang, "Gas-Sensing Devices Based on Zn-Doped NiO Two-Dimensional Grainy Films with Fast Response and Recovery for Ammonia Molecule Detection," Nanoscale Res Lett, vol. 10, p. 461, Dec 2015.
[25]S. Jung and T. Ji, "ZnO Nanorod-Based Humidity Sensors With Fast Response," IEEE Electron Device Letters, vol. 35, pp. 960-962, 2014.
[26]E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, "Self-assembled 3D photonic crystals from ZnO colloidal spheres," Materials Chemistry and Physics, vol. 80, pp. 257-263, 2003.
[27]V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. E. V. Costa, et al., "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature," Thin Solid Films, vol. 427, pp. 401-405, 2003.
[28]K. C. Park, D. Y. Ma, and K. H. Kim, "The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering," Thin Solid Films, vol. 305, pp. 210-219, 1997.
[29]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
[30]S.-H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, pp. 2625-2627, 2003.
[31]P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, et al., "ZnO Nanowires Synthesized by Vapor Trapping CVD Method," Chem. Mater., vol. 16, pp. 5133-5137, 2004.
[32]M. Purica, E. Budianu, E. Rusu, M. Danil, and R. Gavrila, "Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)," Thin Solid Films, vol. 403-404, pp. 485-488, 2003.
[33]S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, "Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 2960-2967, 2006.
[34]Field-emission scanning electron micros; National Chung Hsing University
[35]Y. Tak and K. Yong, "Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method," J. Phys. Chem. B, vol. 109, pp. 19263-19269, 2005.
[36]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions," Chem. Mater., vol. 17, pp. 1001-1006, 2005.
[37]K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution," J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[38]S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci Technol Adv Mater, vol. 10, p. 013001, Feb 2009.
[39]B. Liu and H. C. Zeng, "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm," J. AM. CHEM. SOC., vol. 125, pp. 4430-4431, 2003.
[40]H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, "Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process," J. Phys. Chem. B, vol. 108, 2004.
[41]J. I. A. G. U. O. Y. U and X. I. A. O. X. I. A. O. Y. U, "Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres," Environ. Sci. Technol., vol. 42, pp. 4902–4907, 2008.
[42]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djuris, C. C. Ling, C. D. Beling, et al., "Defects in ZnO Nanorods Prepared by a Hydrothermal Method," J. Phys. Chem. B, vol. 110, pp. 20865-20871, 2006.
[43]R. H. FOWLER, F.R.S, and L. NORDHEIM, "Electron Emission in Intense Electric Fields," Series A, vol. 119, pp. 173-181, 1928.
[44]S. J. Young and L. T. Lai, "Field emission properties of ZnO nanosheets grown on a Si substrate," Microelectronic Engineering, vol. 148, pp. 40-43, 2015.
[45]L. Yi-Hsing, Y. Sheng-Joue, J. Liang-Wen, and C. Shoou-Jinn, "Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature," IEEE Transactions on Electron Devices, vol. 61, pp. 4192-4196, 2014.
[46]E. L. Murphy and R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region," Physical Review, vol. 102, pp. 1464-1473, 1956.
[47]X. Yang, M. L. Simpson, S. J. Randolph, P. D. Rack, L. R. Baylor, H. Cui, et al., "Integrated tungsten nanofiber field emission cathodes selectively grown by nanoscale electron beam-induced deposition," Applied Physics Letters, vol. 86, p. 183106, 2005.
[48]C.-H. Hsiao, C.-S. Huang, S.-J. Young, S.-J. Chang, J.-J. Guo, C.-W. Liu, et al., "Field-Emission and Photoelectrical Characteristics of Ga-ZnO Nanorods Photodetector," IEEE Transactions on Electron Devices, vol. 60, pp. 1905-1910, 2013.
[49]Q. A. Drmosh and Z. H. Yamani, "Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles," Ceramics International, vol. 42, pp. 12378-12384, 2016.
[50]V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, "Nanostructured ZnO chemical gas sensors," Ceramics International, vol. 41, pp. 14239-14244, 2015.
[51]H. Nguyen, C. T. Quy, N. D. Hoa, N. T. Lam, N. V. Duy, V. V. Quang, et al., "Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors," Sensors and Actuators B: Chemical, vol. 193, pp. 888-894, 2014.
[52]M. Ahmad, L. Gan, C. Pan, and J. Zhu, "Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres," Electrochimica Acta, vol. 55, pp. 6885-6891, 2010.

電子全文 電子全文(網際網路公開日期:20250716)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔