跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉俊良
研究生(外文):YE, JUN-LIANG
論文名稱:設計於18~24GHz頻帶低雜訊放大器
論文名稱(外文):Design of the Low Noise Amplifiers in 18~24GHz Band
指導教授:沈自
指導教授(外文):SHEEN, JYH
口試委員:沈自劉偉行韓端勇朱聖緣
口試委員(外文):SHEEN, JYHLIU, WEIH-SINGHAN, TUAN-YUNGCHU, SHENG-YUAN
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:45
中文關鍵詞:低雜訊放大器18~24GHz串接回授pHEMT
外文關鍵詞:Low Noise Amplifier18 ~ 24GHzCascadefeedbackpHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究18~24GHz頻段的低雜訊放大器(Low Noise Amplifier, LNA)電路為主,在射頻收發機中低雜訊放大器扮演重要角色,在接收到信號的同時要有良好的雜訊、增益和穩定度作為輸出。本電路是使用串接電路設計,電路之第一級主要以低雜訊與良好輸入匹配為主,第二級與第三級則是透過串接與回授來提高電路增益與穩定度,進而設計出有良好的增益以及穩定度與較低的雜訊。而本研究所採用的0.15μm pHEMT製程是由穩懋半導體公司(WIN Semiconductors Corp)所提供,並對此電路架構模擬結果進行分析比較。

第一部分設計18~24GHz頻段的低雜訊放大器,主要是用串接架構與回授式架構。透過串接與回授式架構可提高電路增益,輸入與輸出匹配則使用電容與電感來達成。此電路模擬之增益為19.11~20.64dB,輸入反射係數為-10.28~-32.99dB,輸出反射係數為-11.1~-49.04dB,隔離度為-44.55~-52.65dB,雜訊指數為2.64~2.99dB。

第二部分在相同頻率範圍下對低雜訊放大器布局(Layout)改善設計,因為先前在量測時結果不理想,並在布局改善接地與供應電源部分。此電路模擬之增益為13.2~15.35dB,輸入反射係數為-10.02~-50.65dB,輸出反射係數為-10.27~-46.15dB,隔離度為-35.54~-45.25dB,雜訊指數為2.52~2.99dB。


This papered studies the low noise amplifier (LNA) circuit of the 18 ~ 24GHz frequency band. The low noise amplifier plays an important role in the RF transceiver. While receiving the signal, it should have good gain, stability, and low noise at output. This circuit uses a cascade design. The first stage of the circuit is mainly based on low noise and good input matching. The second and third stages are to improve the circuit gain and stability through cascade and feedback, to reach good gain, stability and low noise.

In this study, WIN Semiconductors Corp's 0.15um pHEMT process was used to implement the circuit. The simulation and measurement results and compared.

The first part is to design a low noise amplifier in the 18 ~ 24GHz frequency band, which mainly uses a cascade architecture and a feedback architecture. Through the cascade and feedback architecture, the circuit gain can be improved. The input and output matching is achieved by using capacitors and inductors. The simulated circuit gain is 19.11 ~ 20.64dB, the input reflection coefficient is -10.28 ~ -32.99dB, the output reflection coefficient is -11.1 ~ -49.04dB, the isolation is -44.55 ~ -52.65dB, and the noise figure is 2.64 ~ 2.99dB.

The second part is the improved design of this 18~24GHz low noise amplifier layout, because the results of the previous measurement are not ideal. The Layout are improved in the grounding and power supply parts. The simulated circuit gain is 13.2 ~ 15.35dB, the input reflection coefficient is -10.02 ~ -50.65dB, the output reflection coefficient is -10.27 ~ -46.15dB, the isolation is -35.54 ~ -45.25dB, and the noise figure is 2.52 ~ 2.99dB.

摘要……i
Abstract……ii
誌謝……iv
目錄……v
表目錄……vii
圖目錄……viii
第一章 緒論……1
1.1研究背景……1
1.2研究目的……2
1.3章節介紹……2
第二章 基本原理……3
2.1簡介……3
2.2散射參數(Scattering Parameters)……3
2.3雜訊指數(Noise Figure;NF)……5
2.3.1雜訊因子(Noise Factor;F)……5
2.3.2熱雜訊(Thermal Noise)……6
2.3.3散射雜訊(Shot Noise)……7
2.3.4閃爍雜訊(Flicker Noise)……8
2.3.5高電場擴散雜訊(High Field Diffusion Noise)……9
2.3.6等效雜訊溫度(Equivalent Noise Temperature)……10
2.3.7多級放大器雜訊計算……12
2.4線性度(Linearity)……13
2.4.1 1dB增益壓縮點(1dB Compression Point, P1dB)……13
2.4.2第三階截止點IIP3(Input 3rd-Order Intercept Point, IIP3)……15
2.5穩定度(Stability)……16
2.6 0.15μm pHEMT小訊號模型……18
2.7低雜訊放大器架構……19
2.7.1串接式架構(Cascade Architecture)……19
2.7.2疊接式架構(Cascode Architecture)……20
2.7.3回授式放大器(Feedback Amplifier)……21
2.7.4電流再利用架構(Current-Reuse Construction)……21
2.7.5源極電感退化式寬頻放大器(Inductive Source Degeneration)……22
2.7.6散佈式放大器(Distribute Amplifier)……22
第三章 18~24GHz頻段低雜訊放大器設計……23
3.1設計目的……23
3.2設計流程……23
3.3電路設計……25
3.4模擬結果……27
3.5結果與討論……32
第四章 18~24GHz低雜訊放大器布局重新設計……33
4.1設計目的……33
4.2電路設計……33
4.3模擬結果……34
4.4結果與討論……39
第五章 結論與未來展望……39
參考資料……40
Extended Abstract……42

[1]David Cuadrado-Calle, Danielle George, and Gary Fuller, “A GaAs Ka-band (26-36 GHz) LNA for radio astronomy”, IEEE International Microwave and RF Conference (IMaRC), Bangalore, pp. 301-303, 2014.
[2]江揚馨,“Design of the X-band and Ku-band Low Noise Amplifiers”,國立虎尾科技大學電子工程系碩士論文,2018。
[3]洪健珉,“Design of the Ku-band and 18~24GHz Low Noise Amplifiers”,國立虎尾科技大學電子工程系碩士論文,2017。
[4]翁敏航,“射頻被動元件設計”,東華書局,台北,2006。
[5]David M. Pozar, “微波工程MICROWAVE ENGINEERING 4/E”,高立圖書,2016。
[6]ALAIN CAPPY, “Noise Modeling and Measurement Techniques”, IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 1, pp. 1-10, Jan. 1988.
[7]Ron Mancini, Bruce Carter “Op Amps for Everyone Third Edition”, Texas Instruments, Chapter 10 Op Amp Noise Theory and Applications, 2009.
[8]H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”, Phys. Rev. , vol. 32, no. 1, pp. 110–113, July 1928.
[9]Doo-Sik Shin, J.B. Lee, Hong Shick Min, Jae-Eung Oh, Young June Park, Woong Jung, Dong Sung Ma, “Analytical Noise Model with the Influence of Shot Noise Induced by the Gate Leakage Current for Submicrometer Gate-Length High-Electron-Mobility Transistors”, IEEE Transactions on Electron Devices, vol. 44, no. 11, pp. 1883-1887, Nov. 1997.
[10]Strifler, W. A. , Pugh, B. T. , Remba, R. D. , “Shot noise in GaAs metal semiconductor field effect transistors with high gate leakage current”, Solid-Smrc Elecfronics Vol. 37, No. IO, pp. 1763-l 764, 1994.
[11]B. Razavi, “RF Microelectronics,” Prentice Hall, 1998.
[12]林易輯,“設計於K-Band 及X/Ku-Band 之低雜訊放大器”,國立
虎尾科技大學電子工程研究所碩士論文,2015。
[13]張盛富、張嘉展,“無線射頻晶片模組設計”,全華圖書股份有限公司,2007。
[14]蔡雨哲, “Design of the X-Band and K-Band Low Noise Amplifier”,國立虎尾科技大學電子工程系碩士班,2013。

[15]王姵媖,“寬頻放大器暨V頻段射頻前端接收機電路之研製”,國立中央大學電機工程研究所碩士論文,2009。
[16]Sunwoo Kong, Hui Dong Lee, Cheol Ho Kim, Bonghyuk Park “Design of a 28-GHz Low Noise Amplifier using 0.15-um InGaAs pHEMT E-mode technology”, IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 199-201, Seoul, 2017.
[17]Chun-Chia Huang, Hong-Yeh Chang, Chau-Ching Chiong “Stability Evaluation of a Broadband Multi-Stage Low Noise Amplifier using Nonlinear Analysis”, IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 1-3, Nanjing, China, 2019.
[18]Tim Williams, “The Circuit Designer’s Companion”, British Library, 1991.
[19]Wei-Cheng Huang, Chau-Ching Chiong, Huei Wang “A Fully-Integrated S-Band Differential LNA in 0.15-μm GaAs pHEMT for Radio Astronomical Receiver”, IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 1-3, Melbourne, VIC, 2018.
[20]Jianquan Hu, Kaixue Ma, Shouxian Mou, Fanyi Meng, “Analysis and Design of a 0.1–23 GHz LNA MMIC Using Frequency-Dependent Feedback”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 9, pp. 1517-1521, Sept. 2019.
[21]袁杰,“高頻電路分析與設計”,全威圖書有限公司,台北,1997。
[22]Abdurrahman H. Aljuhani, Tumay Kanar, Gabriel M. Rebeiz “A Packaged Single-Ended K-Band SiGe LNA with 2.14 dB Mean Noise Figure”, IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), CA, pp. 198-201, San Diego, 2018.
[23]S. Rasidah, Amiza Rasmi, M. H. Siti Maisurah, A. I. A. Rahim, M. R. Yahya “15 GHz Medium Power Amplifier Design for Ku- Band Applications”, IEEE Regional Symposium on Micro and Nano Electronics, pp. 108-111, Kota Kinabalu, 2011.
[24]池俊熙,“低電壓主動式電感低雜訊放大器”,國立中山大學電機工程學系碩士論文,2011。
[25]邱顯傑,“OFDM跳頻式低雜訊放大器在超寬頻系統中之應用”,國立交通大學電機學院資訊學院專班電信學程碩士論文,2006。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊