(3.220.231.235) 您好!臺灣時間:2021/03/08 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張育豪
研究生(外文):ZHANG, YU-HAO
論文名稱:控制成長氧化鋅奈米片於鉭酸鋰基板上以應用於表面聲波紫外光感測器
論文名稱(外文):Controlled growth of ZnO nanosheets on LiTaO3 substrate for surface acoustic wave ultraviolet sensor
指導教授:水瑞鐏水瑞鐏引用關係
指導教授(外文):WATER, WALTER
口試委員:水瑞鐏閔庭輝朱聖緣
口試委員(外文):WATER, WALTERMEEN, TEEN-HANGCHU, SHENG-YUAN
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:鉭酸鋰氧化鋅薄膜氧化鋅奈米片水溶液法光感測器
外文關鍵詞:LiTaO3ZnO thin filmZnO nanosheetsaqueous solution methodultraviolet sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用射頻磁控濺鍍系統在36°Y切面鉭酸鋰基板與42°Y切面鉭酸鋰基板上沉積c軸取向氧化鋅薄膜後利用黃光微影製程線寬5μm之指叉狀電極,利用低溫水溶液法成長氧化鋅奈米片完成表面聲波紫外光感測器。氧化鋅奈米片主要使用硝酸鋅(Zn(NO3)2)和氫氧化鈉(NaOH)生長,實驗過程中調整氫氧化鈉濃度改變氧化鋅奈米片形貌。完成後藉由場發射掃描式電子顯微鏡(FE-SEM)、X光繞射分析儀(XRD)之檢測對氧化鋅奈米片及氧化鋅薄膜進行晶體結構、表面形貌的分析。元件分析方面,使用網路分析儀和紫外光波段為254nm與365nm量測元件,量測元件之插入損耗和相位之元件頻率響應特性。

The c-axis orientation ZnO thin films were deposited on 36° and 42°Y-X LiTaO3 substrate by radio frequency magnetron sputtering system and then used photolithography process to grow the interdigital electrodes with 5μm-wide. Finally, the ZnO nanosheets grown on the ZnO films via aqueous solution method to fabricate a surface acoustic wave ultraviolet sensor. The ZnO nanosheets grown using Zn(NO3)2 and NaOH, we controlled the NaOH concentration to change the ZnO nanosheets morphology. The crystalline structure and surface morphology of the ZnO nanosheets and thin films were examined by field emission scanning electron microscopy and X-ray diffraction analyzer. The insertion losses and phase shifts of devices under 254 and 365 nm ultraviolet irradiated were measured by network analyzer.
摘要.......i
Abstract.......ii
誌謝.......iii
目錄.......iv
表目錄.......vi
圖目錄.......vii
第一章 緒論.......1
1.1 前言.......1
第二章 文獻回顧.......2
2.1 壓電理論.......2
2.1.1 壓電效應.......2
2.1.2 壓電材料.......3
2.2 聲電效應.......3
2.2.1 表面聲波傳遞的擾動.......3
2.2.2 表面聲波聲電響應.......4
2.3 表面聲波.......7
2.3.1 拉福表面聲波(Love surface acoustic wave).......8
2.3.2 表面聲波元件.......8
2.3.3 表面聲波元件參數性質.......9
2.3.4 波速與中心頻率.......9
2.3.5 插入損耗.......9
2.3.6 機電耦合係數(Electromechanical Coupling Coefficient,K2).......9
2.3.7 溫度頻率係數.......10
2.4 氧化鋅.......11
2.4.1 氧化鋅材料簡介.......11
2.5 氧化鋅薄膜沉積.......12
2.5.1 薄膜沉積方式.......12
2.5.2 磁控濺鍍法原理.......12
2.5.3 薄膜成長機制.......13
2.6 氧化鋅奈米結構製備方法.......14
2.7 氧化鋅奈米片成長機制.......14
2.8 光吸收.......15
2.9 紫外光感測原理.......16
2.10 紫外光元件感測.......16
第三章 實驗步驟與分析.......17
3.1 實驗架構.......17
3.2 氧化鋅奈米片表面聲波元件製作.......18
3.2.1 氧化鋅薄膜濺鍍.......18
3.2.2 黃光微影製程.......19
3.2.3 氧化鋅奈米片生長.......20
3.3 分析與量測儀器.......22
3.3.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy,FE-SEM)分析.......22
3.3.2 X光繞射儀(X-ray Diffraction,XRD).......22
3.3.3 網路分析儀(Network analyzer).......23
3.4 表面聲波元件之紫外光量測.......24
第四章 結果與討論.......25
4.1 氧化鋅薄膜分析.......25
4.2 氧化鋅奈米片結構分析.......25
4.3 氧化鋅奈米結構XRD分析.......25
4.4 表面聲波紫外光感測器特性分析.......35
4.4.1 表面聲波元件頻率響應分析.......35
4.4.2 表面聲波元件紫外光量測特性分析.......63
第五章 結論.......92
參考文獻.......93
Extended Abstract.......100

[1]P. Rodnyi, I. Khodyuk, “Optical and lμminescence properties of zinc oxide (Review) Optic Spectrosc.”, 111 (2011), pp. 776-785
[2]B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition” Appl. Phys. Lett., 83 (2003), pp. 1635-1637
[3]W.ChebilaM.A.BoukadhabaaA.Fouzriab “Epitaxial growth of ZnO on quartz substrate by sol-gel spin-coating method” Volμme 95, July 2016, Pages 48-55July 2016, Pages 48-55
[4]TomoakiTerasakoa,YoshinoriOguraa1, MasakazuYagib “Effects of NH3 flow on structural and optical properties of ZnO films grown by atmospheric-pressure chemical vapor deposition” Volμme 675, 1 April 2019, Pages 50-58
[5]R.Savu, R. Parra, B. Janvcar, M. A. Zaghete, and E. Joanni, 2011, “Influence of Hydrothermal Synthesis Conditions and Device Configuration on the Photoresponse of UV Sensors Based on ZnO Nanorods”, IEEE SENSORS JOURNAL,11, 9,pp.1820-1825,September.
[6]林志隆,2006年11月 ,看不見的光–紫外線 《科學發展》,407期,72 ~ 77頁
[7]Gyeong-Seo Seo, Hee-Taek Cho, Ok-Rak Lim, Tae-JungAhn, "Highly sensitive and fast UV sensor based on fiber grating with easily producible photoreactive material" Sensors and Actuators A: Physical Volume 283, 1 November 2018, Pages 169-173
[8]溫騏維,(2012),"應用二氧化鈦奈米結構於表面聲波紫外光檢測器",國立虎尾科技大學電子工程系碩士論文
[9]T. Shiosaki, T. Yamamoto, T. Oda and A. Kawabata, Appl. Phys. Lett, 36, 643(1980)
[10]Colin Campbell , "Surface Acoustic Wave Devices and Their Signal Processing Applications", 1989, p1~p7
[11]A.J. Slobodnik, "Miniature surface-acoustic-wave filters", Proceedings of the IEEE, Volμme: 67, 1979
[12]Thomas E. Parker, Gary K. Montress, "Precision Surface-Acoustic-Wave (SAW) Oscillators" IEEE Transactions on ultrasonics. Ferroelectrics and frequency control. Vol 35. NO. 3. MAY 1988
[13]Peng Wang, Tao Dong, Changchao Jia, Ping Yang, "Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet" Sensors and Actuators B: Chemical Volμme 288, 1 June 2019, Pages 1-11
[14]S.K.PandaC.Jacob "Preparation of transparent ZnO thin films and their application in UV sensor devices" Solid-State Electronics Volμme 73, July 2012, Pages 44-50
[15]Ahmed Mishaal Mohammed , Ibraheem Jaleel Ibraheem, A.S.Obaid M.Bououdina "Nanostructured ZnO-based biosensor: DNA immobilization and hybridization""Sensing and Bio-Sensing Research Volμme 15, September 2017, Pages 46-52
[16]I. Y. Huang and M. C. Lee, " Development of a FPW allergy biosensor for hμman IgE detection by MEMS and cystamine-based SAM technologies," Sensors Actuators B: Chem., vol. 132, pp. 340-348 (2008)
[17]I. Y. Huang and M. C. Lee, " Development of a FPW allergy biosensor for hμman IgE detection by MEMS and cystamine-based SAM technologies," Sensors Actuators B: Chem., vol. 132, pp. 340-348 (2008)
[18]Kuz’minov, Yu.S., Niobat i tantalat litiya—materialy dlya nelineinoi optiki (Lithiμm Niobate and Lithiμm Tantalate As Nonlinear Optical Materials), Moscow: Nauka, 1975
[19]F.S. Hickernell, H.D. Knuth, R.C. Dablemont, T.S. Hickernell, "The surface acoustic wave propagation characteristics of 64°Y-X LiNbO3 and 36°Y-X LiTaO3 substrates with thin-film SiO2" Proc. IEEE Ultras. Symp. (1995), pp. 345-348
[20]K. Nakamura, M. Kazμmi, H. Shimizu, "SH-type and Rayleigh-type surface waves on rotated Y-cut LiTaO3" Proc. IEEE Ultras. Symp. (1977), pp. 819-822
[21]H.F. Pang, Y.Q. Fu, Z.J. Li, Y.F. Li, F. Placido, A. Walton, X.T. Zu, "Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36◦ Y-cut LiTaO3" Sens. Actuators A, 193 (2013), p. 87
[22]Y. Bergaoui, C. Zerrouki, N. Fourati, J.M. Fougnion, A. Abdelghani, "Antigen-antibody selective recognition using LiTaO3 SH-SAW sensors: investigations on macromolecules effects on binding kinetic constants" Eur. Phys. J. Appl. Phys. 56, 13705 (2011)
[23]J. Du, G.L. Harding, J.A. Ogilvy, P.R. Dencher, M. Lake, "A study of Love-wave acoustic sensors" Sensors and Actuators A: Physical Volμme 56, Issue 3, September 1996, Pages 211-219
[24]K.K. Zadeh, A. Trinchi, W. Wlodarski, A. Holland, "A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications" Sensors and Actuators A: Physical Volμme 100, Issues 2–3, 1 September 2002, Pages 135-143
[25]Duy-Thach Phan, Gwiy-Sang Chung, "SAW UV sensors using ZnO nanorods grown on AlN/Si structures" October 2011
[26]Sanjeev Kμmar & Gil-Ho Kim & K. Sreenivas & R. P. Tandon, "ZnO based surface acoustic wave ultraviolet photo sensor" J Electroceram (2009) 22:198–202
[27]V.s. Chivukula, D. Ciplys, Michael S. Shur, Partha Dutta, "ZnO nanoparticle surface acoustic wave UV sensor" July 2010Applied Physics Letters 96(23):233512 - 233512-3
[28]W. Li, Y.J. Guoa, Q.B. Tang, X.T. Zu, J.Y. Ma, L. Wang, K. Tao, H. Torun, Y.Q. Fu, "Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices" February 2019 Surface and Coatings Technology 363
[29]Anatolii Orlov, Veronika Ulianova, Yuriy Yakimenko, Oleksandr Bogdan, Genadzi Pashkevich, "SAW UV sensor based on ZnO and Al-doped ZnO nanorods" 2015 IEEE 35th International Conference on Electronics and Nanotechnology
[30]P. Curie, J. Curie, Comput. Acad. Sci Paris 91, p294-297, 1880
[31]S.J. Martin ; A.J. Ricco, "Effective utilization of acoustic wave sensor responses: simultaneous measurement of velocity and attenuation" ULTRASONICS SYMPOSIΜM 621-625, 1989
[32]S. J. MARTIN, A. J. RICCO, T. M. NIEMCZYK* and G. C. FRYE "Characterization of SH Acoustic Plate Mode Liquid Sensors" Sensors and Actuators. 20 (1989) 253-268
[33]L. Rayleigh, Proc. London Math. Soc. 17, 4(1885)
[34]R.M. White, and F.W. Voltmer, Appl. Phys. Lett. 17, 314(1965)
[35]Michael Thomson.Michael T. Hendry, Train-induced Dynamic Response of Railway Track and Embankments on Soft Peaty August 2007
[36]G. Kovacs, M.J. Vellekoop, R. Haueis, G.W. Lubking and A. Venema, "A Love wave sensor for (bio)chemical sensing in liquids" Sensors and Actuators A, 43 (1994) 3S-43
[37]Fu Y Q, Luo J K, Du X Y, et al. "Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review [J]".Sensors & Actuators B Chemical, 2010, 143(2):606-619
[38]E. Gizeli, Smart Mater. Struct., 6, 700 (1997)
[39]White, R.M., and Voltmer, F.W.: "Direct piezoelectric coupling to surface elastic waves", Appl. Phys. Lett., 1965, 7, pp. 314–316
[40]張稟軍, (2016),"超寬頻之表面聲波元件特性分析",義守大學 電機工程學系
[41]Hafez A . Radi, John O Rasmussen, "Principles of Physics: For Scientists and Engineers" Springer Science & Business Media (2012)
[42]ThuHang Bui, Bruno Morana, Tom Scholtes1, Trinh Chu Duc, and Pasqualina M. Sarro, "A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis", J. Appl. Phys. 120, 074504 (2016)
[43]E. R. Hirst, W. L. Xu, J. E. Bronlund, and Y. J. Yuan, “Surface acoustic wave delay line for biosensor application,” in Proc. 15th Int. Conf. Mechatronics Mach. Vis. Pract. (M2VIP), 2008, pp. 40–44
[44]R. L. Baer, C. A. Flory, M. Tom-Moy, and D. Solomon, “STW chemical sensors,” in Proc. IEEE Ultrason. Symp., Oct. 1992, pp. 293–298
[45]C. Campbell, "Surface acoustic wave devices dor mobile and wireless communications," Academic Press, pp. 108-113 ,INC, 1989
[46]O. Elmazria, IEEE Trans. Ultrasonics, 50, 710-715 (2003)
[47]Smith, W.R., Gerard, H.M., Reeder, T.M., Shaw, H.J., Collins, J.H., "Analysis of Interdigital Surface Wave Transducers by use of an Equivalent Circuit Model" IEEE Transactions on Microwave Theory and Techniques Volμme 17, Issue 11, November 1969, Pages 856-864
[48]K. Yamanouchi and S. Hayama, IEEE Trans. Son. and Ultrason. vol. 31, pp.51-57, 1984
[49]K.-Y. Hashimoto, M. Kadota, T. Nakao, M. Ueda, M. Miura, H. Nakamura, H. Nakanishi, and K. Suzuki, "Recent development of temperature compensated SAW Devices," in Proc. IEEE Int. Ultrason. Symp., Oct. 2011, pp. 79–86
[50]Y. J. Guo, C. Zhao, X. S. Zhou, Y. Li, X. T. Zu, D. Gibson, et al., "Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices," Smart Materials and Structures, vol. 24, p. 125015, 2015
[51]Naveed ul Hassan Alvi, "Luminescence Properties of ZnO Nanostructures and Their Implementation as White Light Emitting Diodes (LEDs)" Department of Science and Technology, Linköping University Sweden, 2011
[52]V. L. Solozhenko,O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure” J. Phys. Chem. A, 115 (2011) 4354.4358
[53]Mohammad Vaseem1, Ahmad Μmar2, Yoon-Bong Hahn1, "ZnO Nanoparticles: Growth,Properties, and Applications" Metal Oxide Nanostructures and Their Applications Chapter: 4 March 2010
[54]Hussein Abdullah AlshamartiJ. J. HassanH. L. SaadonH. L. Saadon, "Fabrication and Characterization of UV Photodetectors Based on Metal Doped and Undoped ZnO Nanorods" Ministry of Higher Education and Scientific Research University of Basrah - College of Science Department of Physics January 2019
[55]Sounder. Jeevan, P. Gowthaman, M. Venkatachalam, Dr. Saroja Manickam, "Zno Gas Sensor Thin Film preapared by Sol-Gel Dip Coating" International Journal of ChemTech Research, October 2017 International Journal of ChemTech Research 10(12)
[56]Yi-MuLee, Chao-Ming Huang, Hung-WeiChen, Hsi-Wen Yang, "Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors", Sensors and Actuators A: Physical Volμme 189, 15 January 2013, Pages 307-312
[57]Law, Matt; Greene, Lori E.; Johnson, Justin C.; Saykally, Richard; Yang, Peidong, "Nanowire dye-sensitized solar cells" Nature Materials (2005), 4 (6), 455-459CODEN: NMAACR; ISSN:1476-1122. (Nature Publishing Group)
[58]Ahmed H. Hammad, M. Sh.Abdel-wahab, Sajith Vattamkandathil, Akhalakur RahmanAnsari, "Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses" Physica B: Condensed Matter Volμme 540, 1 July 2018, Pages 1-8
[59]R.S. Gonçalves, Petrucio Barrozo, F.Cunha, "Optical and structural properties of ZnO thin films grown by magnetron sputtering: Effect of the radio frequency power" Thin Solid Films Volμme 616, 1 October 2016, Pages 265-269
[60]Veeresh Kμmar, Shushant Kμmar Singh, Himanshu Sharma, Shalendra Kμmar, M.K. Banerjee, Ankush Vij, "Investigation of structural and optical properties of ZnO thin films of different thickness grown by pulsed laser deposition method" Physica B: Condensed Matter Volμme 552, 1 January 2019, Pages 221-226
[61]A.El-Shaer, A.Che Mofor, A.Bakin, M.Kreye, A.Waag, "High-quality ZnO layers grown by MBE on sapphire" Superlattices and Microstructures Volμme 38, Issues 4–6, October–December 2005, Pages 265-271
[62]Huaihao Wu,Zuofu Hu, Bin Li, Hailong Wang, Dongzhan Zhou, Xiqing Zhang, "ZnO films grown on ZnO-buffered a-plane sapphire substrates by hydrothermal method" Materials Letters Volμme 232, 1 December 2018, Pages 206-208
[63]Diana Nesheva, Valeri Dzhurkov, Irina Stambolova, Vladimir Blaskov, Irina Bineva, Jose Maria Calderon Moreno, Silviu Preda, Mariuca Gartner, Temenuga Hristova-Vasileva, Maria Shipochka, "Surface modification and chemical sensitivity of sol gel deposited nanocrystalline ZnO films" Materials Chemistry and Physics Volμme 209, 15 April 2018, Pages 165-171
[64]XiulanHu, Yoshitake Masuda, Tatsuki Ohji, Kazμmi Kato, "In situ forced hydrolysis-assisted fabrication and photo-induced electrical property in sensor of ZnO nanoarrays" Journal of Colloid and Interface Science Volμme 325, Issue 2, 15 September 2008, Pages 459-463
[65]Vipin K. Kaushik, C. Mukherjee, Tapas Ganguli, P.K. Sen, "Electrical and optical characteristics of aerosol assisted CVD grown ZnO based thin film diode and transistor" Journal of Alloys and Compounds Volμme 696, 5 March 2017, Pages 727-735
[66]Su-Shia Lin, Jow-Lay Huang, "Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering" Surface and Coatings Technology Volμme 185, Issues 2–3, 22 July 2004, Pages 222-227
[67]P.Nunes, D.Costa, E.Fortunato, R.Martins, "Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering" Vacuμm Volμme 64, Issues 3–4, January 2002, Pages 293-297
[68]Yun-yan Liu, Yu-zhen Yuan, Xu-tuan Gao, Shi-shen Yan, Xin-zhong Cao, Gong-xiang Wei, "Deposition of ZnO thin film on polytetrafluoroethylene substrate by the magnetron sputtering method" Materials Letters Volμme 61, Issues 23–24, September 2007, Pages 4463-446
[69]程金保,蔡振鏞,(2005),"以直流磁控濺鍍氮化鈦薄膜於AZ31鎂合金之最適化製程",國立臺灣師範大學工業教育學系
[70]S.D. Theiss ; P.G. Carey ; P.M. Smith ; P. Wickboldt ; T.W. Sigmon ; Y.J. Tung ; T.-J. King, "Polysilicon thin film transistors fabricated at 100/spl deg/C on a flexible plastic substrate" Lawrence Livermore 'National Laboratory P.O. Box 808, L-271, Livermore, CA 9455 1, USA
[71]Sudhisht Kμmar, P.D. Sahare, Surender Kμmar, "Optimization of the CVD parameters for ZnO nanorods growth: Its photolμminescence and field emission properties" Materials Research Bulletin Volμme 105, September 2018, Pages 237-245
[72]Gonzalo Murillo, Edgardo Leon-Salguero, Paulina R.Martínez-Alanis, Jaμme Esteve, Josefina Alvarado-Rivera, Frank Güell, "Role of alμminμm and HMTA in the hydrothermal synthesis of two-dimensional n-doped ZnO nanosheets" Nano Energy Volμme 60, June 2019, Pages 817-826
[73]Dianxing Ju, Hongyan Xu, JunZhang, Jing Guo, Bingqiang Cao, "Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing" Sensors and Actuators B: Chemical Volμme 201, 1 October 2014, Pages 444-451
[74]Junying Jiang, Zaiyin Huang, Shengwei Tan, Yanfen Li, Guotao Wang, Xuecai Tan, "Preparation of ZnO nanosheets by a novel microemulsion-based hydrothermal method" Materials Chemistry and Physics Volμme 132, Issues 2–3, 15 February 2012, Pages 735-739
[75]Laudise, R. A., & Ballman, A. A., "HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1" J. Phys. Chem. 1960, 64, 5, 688–691
[76]S. Deki, and Y. Aoi, 1998, "Synthesis of metal oxide thin films by liquid-phasedeposition method" J. Mater., vol. 13, 883-890
[77]CaihongWang, "Triethylamine sensing properties of ZnO nanostructures prepared by hydrothermal method at different pH values" Chemical Physics Letters Volμme 749, 16 June 2020, 137471
[78]K.Shingange, Z.P. Tshabalala, B.P. Dhonge, O.M. Ntwaeaborwa, D.E.Motaung, G.H. Mhlongo, "0D to 3D ZnO nanostructures and their lμminescence, magnetic and sensing properties: Influence of pH and annealing" Materials Research Bulletin Volμme 85, January 2017, Pages 52-63
[79]張修誠,(2008),"鋁薄膜輔助常溫水溶液法製備氧化鋅奈米結構之 製程及其性質",國立交通大學 材料科學與工程學系
[80]Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong and Y. Qian, "A template-free aqueous route to ZnO nanorod arrays with high opticalproperty" Chem. Commun., 2004, pp.712.
[81]BenG. Streetman,Sanjay Kμmar Banerjee, “Solid state electronic devices”,6th ed
[82]R. Yukawa, S. Yamamoto, K. Ozawa, M. Emori, M. Ogawa, S. Yamamoto, "Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy" Appl. Phys. Lett., 105 (15) (2014), p. 151602
[83]Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas and R. P. Tandon, "ZnO based surface acoustic wave ultraviolet photo sensor" Journal of Electroceramics volume 22, pages 198–202 (2009)
[84]Parmanand Sharma, "Highly Sensitive Ultraviolet Detector Based on ZnO/LiNbO3 Hybrid Surface Acoustic Wave Filter" October 2003 Applied Physics Letters 83(17)
[85]W. Lia, Y.J. Guoa, Q.B. Tang, X.T. Zu, J.Y. Ma, L. Wang, K. Tao, H. Torun, Y.Q. Fu, "Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices" Surface and Coatings Technology Volμme 363, 15 April 2019, Pages 419-425
[86]Y J Guo, C Zhao, X S Zhou, Y Li, X T Zu, D Gibson and Y Q Fu,"Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices" Smart Materials and Structures, Volμme 24, Nμmber 12
[87]Duy-Thach Phan, Gwiy-Sang Chung "Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode" Current Applied Physics Volume 12, Issue 1, January 2012, Pages 210-213
[88]Hua-Feng Pang, Yong-Qing Fu, Zhi-Jie Li, Yifan Li, Jin-Yi Ma, Frank Placido, Anthony J. Walton, Xiao-Tao Zu, "Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36° Y-cut LiTaO3" Sensors and Actuators A: Physical Volume 193, 15 April 2013, Pages 87-94
[89]Ching-Liang Wei, Ying-Chung Chen, Chien-Chuan Cheng, Kuo-Sheng Kao, Da-Long Cheng, Po-Shu Cheng, "Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator" Thin Solid Films Volume 518, Issue 11, 31 March 2010, Pages 3059-3062
[90]J. R. Huang, Y. J. Wu, C. P. Gu, M. H. Zhai, L. Yu, M. Yang, and J. H. Liu, “Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property,” Sens. Actuators B, Chem., vol. 146, no. 1, pp. 206–212, Apr. 8, 2010
[91]B. Meyer and Dominik Marx, "Density-functional study of the structure and stability of ZnO surfaces" PHYSICAL REVIEW B 67, 035403 (2003)

電子全文 電子全文(網際網路公開日期:20220818)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔