跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳崧毅
研究生(外文):WU, SUNG-YI
論文名稱:雙輸入單輸出之一體式充電器設計與實現
論文名稱(外文):Design and Realization of a Dual-Input-Single-Output Integrated Charger
指導教授:蔡建峰蔡建峰引用關係
指導教授(外文):TSAI, JIAN-FENG
口試委員:張欣宏江益賢蔡建峰
口試委員(外文):CHANG, SHIN-HUNGCHIANG, YI-HSIENTSAI, JIAN-FENG
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:複合電能轉換系統雙輸入單輸出功率分配
外文關鍵詞:hybrid electric power conversion system (HEPCS)dual-input-single-outputpower distribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要.........................i
Abstract.........................ii
誌謝.........................iii
目錄.........................iv
表目錄.........................vi
圖目錄.........................vii
第一章 緒論.........................1
1.1 背景與動機.........................1
1.2 文獻回顧.........................3
1.3 論文大綱.........................10
第二章 複合電能轉換系統理論分析.........................11
2.1 簡介.........................11
2.2 耦合開關矩陣理論.........................13
2.3 IB-HEPCS基於變頻器之電能轉換系統設計.........................16
第三章 整合式車載型充電器.........................27
3.1 簡介.........................27
3.2 驅動模式.........................27
3.3 充電模式.........................29
3.3.1 雙輸入單輸出非反相升降壓轉換器原理與分析.........................29
3.3.2 充電控制策略.........................37
3.4 雙迴路控制系統.........................41
3.4.2 三段式充電決策.........................41
3.4.3 電流比例計算.........................41
3.4.4 PI控制器.........................42
3.4.5 PWM控制.........................42
第四章 複合式電能轉換系統數位化控制模擬驗證.........................43
4.1 簡介.........................43
4.2 數位化控制模擬驗證.........................45
4.3 模擬結果.........................50
第五章 硬體電路驗證與實驗結果.........................60
5.1 簡介.........................60
5.2 硬體電路架構.........................61
5.2.1 三相變頻器電路.........................61
5.2.2 閘極驅動電路.........................62
5.2.3 電壓感測電路.........................63
5.2.4 電流感測電路.........................64
5.2.5 繼電器控制電路.........................65
5.2.6 馬達.........................66
5.2.7 數位訊號處理器.........................67
5.3 實驗結果.........................68
第六章 結論與建議.........................78
參考文獻.........................79
Extended Abstract.........................86

[1]“溫室氣體排放統計,” 行政院環境保護署, Mar. 24, 2020. [Online]. Available: https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b%E3%80%80. [Accessed: May. 12, 2020].
[2]“聯合國氣候變化綱要公約,” 氣候變遷生活網, May. 15, 2020. [Online]. Available: https://ccis.epa.gov.tw/know/pact. [Accessed: May. 16, 2020].
[3]鄭冠淳, “全球電動車中美領軍銷量翻倍2019誰與爭鋒,” 車輛中心, 2019.
[4]C. Kobe, “2019 全球車市整體下滑,電動車持續 20% 高成長,” 科技新報, Oct. 30, 2019. [Online]. Available:https://technews.tw/2019/10/30/car-market-shrink-ev-growup/. [Accessed: May. 16, 2020].
[5]“智能電動車輛產業輔導推廣計畫,” 經濟部工業局, Apr. 12, 2020. [Online]. Available:https://www.moeaidb.gov.tw/external/ctlr?PRO=project.rwdProjectView&id=1472. [Accessed: May. 17, 2020].
[6]“經濟部推動電動機車產業補助實施要點修正規定,” 經濟部工業局, May. 11, 2019. [Online]. Available:https://law.moea.gov.tw/LawContent.aspx?id=GL000499. [Accessed: May. 17, 2020].
[7]張育嘉, “汰役電池電源供應系統之研究,” 國立彰化師範大學電機工程學系 碩士論文, 2018.
[8]黃昭銘, “用於儲能系統之汰役電池充放電策略,” 國立中山大學電機工程學系 碩士論文, 2017.
[9]李孟鴻, “汰役鋰電池循環經濟之研究,” 國立中央大學企業管理學系 碩士論文, 2017.
[10]T.-C. Chiueh, M.-C. Huang, K.-C. Juang, S.-H. Liang, and W. Ling, “Virtualizing Energy Storage Management Using RAIBA, ” 2018 USENIX Annual Technical Conference., pp. 187-197, 2018.
[11]T. Na, X. Yuan, J. Tang, and Q. Zhang, “A Review of On-Board Integrated Charger for Electric Vehicles and A New Solution,” 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 693-699, 2019.
[12]I. Subotic, and E. Levi, “A review of single-phase on-board integrated battery charging topologies for electric vehicles,” 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), pp. 136-145, 2015.
[13]S. Dusmez, and A. Khaligh, “A Compact and Integrated Multifunctional Power Electronic Interface for Plug-in Electric Vehicles,” IEEE Transactions on Power Electronics., vol. 28, no. 12, pp. 5690-5701, 2013.
[14]S. Ebrahimi, M. Taghavi, F. Tahami, and H. Oraee, “A Single-Phase Integrated Bidirectional Plug-In Hybrid Electric Vehicle Battery Charger,” IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 1137-1142, 2014.
[15]Y.-J. Lee, A. Khaligh, and A. Emadi, “Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-In Hybrid Electric Vehicles,” IEEE Transactions on Vehicular Technology., vol. 58, no. 8, pp. 3970-3980, 2009.
[16]R. Hou, and A. Emadi, “Integrated active power filter auxiliary power modules for electrified vehicle applications with single-phase on-board chargers,” 2015 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-6, 2015.
[17]F. Lacressonniere, and B. Cassoret, “Converter used as a battery charger and a motor speed controller in an industrial truck,” 2005 European Conference on Power Electronics and Applications, pp. 1-7, 2005.
[18]T.-M. Heinrich, “Reconfigurable inverter apparatus for battery-powered vehicle drive,” US5291388 A, 1994.
[19]J.-Y. Lee, H.-S. Song, I.-P. Yoo, K.-Y. Jang, S. Shin, and J.-H. Joo, “System for recharging plug-in hybrid vehicle and control method for the same,” US20120049803 A1, 2012.
[20]B. Cheng, and F. Huang, “Apparatus and method employing bi-directional converter for charging and/or supplying power,” US20040062059 A1, 2004.
[21]M.-C.-B.-P. Rodrigues, I.-D.-N. Souza, A.-A. Ferreira, P.-G. Barbosa, and H.-A.-C. Braga, “Simultaneous active power filter and G2V (or V2G) operation of EV on-board power electronics,” IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4684-4689, 2013.
[22]O. Josefsson, A. Lindskog, S. Lundmark, and T. Thiringer, “Assessment of a Multilevel Converter for a PHEV charge and traction application,” 2010 XIX International Conference on Electrical Machines (ICEM), pp. 1-6, 2010.
[23]B. Sarrazin, “Optimisation d’une chaîne de traction pour véhicule électrique,” G2ELab - Laboratoire de Génie Electrique de Grenoble, 2013.
[24]L.-M. Tolbert, F.-Z. Peng, and T.-G. Habetler, “Multilevel inverters for electric vehicle applications,” Power Electronics in Transportation, pp. 79-84, 1998.
[25]G.-J. Su, and L. Tang, “Current source inverter based traction drive for EV battery charging applications,” 2011 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, 2011.
[26]L. Solero, “Nonconventional on-board charger for electric vehicle propulsion batteries,” IEEE Transactions on Vehicular Technology., vol. 50, no. 1, pp. 144-149, 2001.
[27]G. Pellegrino, E. Armando, and P. Guglielmi, “Integrated battery charger for electric scooter,” 2009 13th European Conference on Power Electronics and Applications, pp. 1-7, 2009.
[28]G. Pellegrino, E. Armando, and P. Guglielmi, “An Integral Battery Charger With Power Factor Correction for Electric Scooter,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 751-759, 2010.
[29]S. Loudot, B. Briane, O. Ploix, and A. Villeneuve, “Fast Charging Device For An Electric Vehicle,” WO2010103063 A1, 2010.
[30]M. Marzouk, J.-P. Ferrieux, D. Frey, and B. Sarrazin, “A shared traction drive and battery charger modes for Plug-In Hybrid Electric Vehicle application,” 2014 16th European Conference on Power Electronics and Applications, pp. 1-10, 2014.
[31]M.-A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between electric vehicle and DC or AC grid,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3403-3410, 2012.
[32]S.-Q. Ali, D. Mascarella, G. Joos, T. Coulombe, and J.-M. Cyr, “Three Phase High Power Integrated Battery Charger for Plugin Electric Vehicles,” 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, 2015.
[33]C. Shi, Y. Tang, and A. Khaligh, “A Three-Phase Integrated Onboard Charger for Plug-In Electric Vehicles,” IEEE Transactions on Power Electronics., vol. 33, no. 6, pp. 4716-4725, 2017.
[34]C. Shi, Y. Tang, and A. Khaligh, “A Single-Phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles,” IEEE Transactions on Vehicular Technology., vol. 66, no. 12, pp. 10899-10910, 2017
[35]W.-E. Rippel, “Integrated traction inverter and battery charger apparatus,” US4920475 A, 1990.
[36]M. Truntič, T. Konjedic, M. Milanovič, P. Šlibar, and M. Rodič, “Control of integrated single-phase PFC charger for EVs,” IET Power Electronics., vol. 11, no. 11, pp. 1804-1812, 2018.
[37]B.-T. Vankayalapati, R. Singh, and V.-K. Bussa, “Two stage integrated on-board charger for EVs,” 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 1807-1813, 2018.
[38]A.-G. Cocconi, “Combined motor drive and battery recharge system,” US5341075 A, 1994.
[39]L. Tang, and G.-J. Su, “A low-cost, digitally-controlled charger for plug-in hybrid electric vehicles,” 2009 IEEE Energy Conversion Congress and Exposition, pp. 3923-3929, 2009.
[40]G.-J. Su, and L. Tang, “Control of plug-in hybrid electric vehicles for mobile power generation and grid support applications,” 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1152-1157, 2010.
[41]G.-J. Su, and L. Tang, “A new integrated onboard charger and accessory power converter for plug-in electric vehicles,” 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4790-4796, 2014.
[42]D.-G. Woo, Y.-S. Kim, G.-B. Kang, and B.-K. Lee, “Advanced integrated battery chargers for plug-in hybrid electric vehicles,” 2012 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 783-788, 2012.
[43]S. Loudot, B. Briane, O. Ploix, and A. Villeneuve, “Fast Charging Device For An Electric Vehicle,” WO2010103063 A1, 2010.
[44]I. Subotic, N. Bodo, E. Levi, M. Jones, and V. Levi, “Isolated Chargers for EVs Incorporating Six-Phase Machines, ” IEEE Transactions on Industrial Electronics., vol. 63, no. 1, pp. 653-664, 2016.
[45]I. Subotic, N. Bodo, and E. Levi, “Integration of Six-Phase EV Drivetrains Into Battery Charging Process With Direct Grid Connection,” IEEE Transactions on Energy Conversion., vol. 32, no. 3, pp. 1012-1022, 2017.
[46]S.-Q. Ali, D. Mascarella, G. Joos, and L. Tan, “Torque Cancelation of Integrated Battery Charger Based on Six-Phase Permanent Magnet Synchronous Motor Drives for Electric Vehicles,” IEEE Transactions on Transportation Electrification., vol. 4, no. 2, pp. 344-354, 2018.
[47]M.-S. Diab, A.-A. Elserougi, A.-S. Abdel.-Khalik, A.-M. Massoud, and S. Ahmed, “A Nine-Switch-Converter-Based Integrated Motor Drive and Battery Charger System for EVs Using Symmetrical Six-Phase Machines,” IEEE Transactions on Industrial Electronics., vol. 63, no. 9, pp. 5326-5335, 2016.
[48]N. Bodo, E Levi, I. Subotic, J. Espina, L. Empringham, and C.-M. Johnson, “Efficiency Evaluation of Fully Integrated On-Board EV Battery Chargers With Nine-Phase Machines,” IEEE Transactions on Energy Conversion., vol. 32, no. 1, pp. 257-266, 2016.
[49]N. Bodo, I. Subotic, E. Levi, and M. Jones, “Single-Phase On-Board Integrated Battery Charger Based on a Nine-Phase Machine,” IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3210-3216, 2014.
[50]S. Haghbin, M. Alakula, K. Khan, S. Lundmark, M. Leksell, O. Wallmark, and O. Carlson, “An Isolated Integrated Charger for Electric or Plug-in Hybrid Vehicles,” 2010 IEEE Vehicle Power and Propulsion Conference, pp. 1-6, 2010.
[51]S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “An Isolated High-Power Integrated Charger in Electrified-Vehicle Applications,” IEEE Transactions on Vehicular Technology., vol. 60, no. 9, pp. 4115- 4126, 2011.
[52]J. Hong, H. Lee, and K. Nam, “Charging Method for the Secondary Battery in Dual-Inverter Drive Systems for Electric Vehicles,” IEEE Transactions on Power Electronics., vol. 30, no. 2, pp. 909-921, 2015.
[53]S. Semsar, T. Soong, and P. W. Lehn, “Integrated Single-Phase Electric Vehicle Charging Using a Dual-Inverter Drive,” 2018 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 320-325, 2018.
[54]H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR Drive With Integrated Charging Capacity for Plug-In Hybrid Electric Vehicles (PHEVs),” IEEE Transactions on Industrial Electronics., vol. 61, no. 10, pp. 5722-5731, 2014.
[55]L. Jianing, X. Guoqing, J. Linni, and L. Liu, “Electric Air Conditioner System with On-Board Charger for PHEV,” 2011 IEEE International Conference on Information and Automation, pp. 421-426, 2011.
[56]L. Jianing, X. Guoqing, W. Bangming, B. JunFang, and W. Huijun, “A Novel Integrated Switched Reluctance Motor Drive With Bi-directional Inverter,” 2014 IEEE International Conference on Industrial Technology (ICIT), pp. 885-889, 2014.
[57]J. Jiang, and T. Xia, “An Integrated Charger with Central-tapped Winding Switched Reluctance Motor Drive,” 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 870-874, 2017.
[58]M. Barnes, and C. Pollock, “Forward Converters for Dual Voltage Switched Reluctance Motor Drives,” Power Electron. IEEE Trans., vol. 16, no. 1, pp. 83-91, 2001
[59]M. Barnes, and C. Pollock, “A New Power Electronic Drive for Integrated Battery/Mains Motoring,” Conference Record of the 1999 IEEE Industry Applications Conference, pp. 539-546, 1999.
[60]W.-K. Thong, and C. Pollock, “Low Cost Battery Powered Switched Reluctance Drives with Integral Battery Charging Capability,” Conference Record of the 1999 IEEE Industry Applications Conference, pp. 60-64, 1999.
[61]N. Zhang, D. Sutanto, and K. M. Muttaqi, “A Review of Topologies of Three-Port DC–DC Converters for The Integration of Renewable Energy and Energy Storage System,” Renewable and Sustainable Energy Reviews., vol. 56, pp388-401, 2016.
[62]A.-M. Elmakawi, and K.-Ç. Bayındır, “Non-isolated Multi-Port Inverter Topologies for Renewable Energy Applications: A review,” 2019 1st Global Power, Energy and Communication Conference (GPECOM), pp. 321-330, 2019.
[63]A. Khaligh, and Z. Li, “Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art,” IEEE Transactions on Vehicular Technology., vol. 59, no. 6, pp. 2806-2814, 2010.
[64]H. Wu, K. Sun, S. Ding, and Y. Xing, “Topology Derivation of Nonisolated Three-Port DC–DC Converters From DIC and DOC,” IEEE Transactions on Power Electronics., vol. 28, no. 7, pp. 3297-3307, 2012.
[65]Y. Chen, G Wen, L. Peng, Y. Kang, and Jian Chen, “A Family of Cost-Efficient Non-isaolated Single-Inductor Three-Port Converters for Low Power Stand-Alone Renewable Power Applications,” 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1083-1088, 2013.
[66]Z. Li, O. Onar, and Alireza Khaligh, “Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System,” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 591-596, 2009.
[67]B.-G. Dobbs, and P.-L. Chapman, “A Multiple-Input DC-DC Converter Topology,” IEEE Power Electronics Letters., vol. 1, no. 1, pp. 6-9, 2003.
[68]J. Cao, and A. Emadi, “A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles,” IEEE Transactions on Power Electronics., vol. 27, no. 1, pp. 122-132, 2011.
[69]A. Tani, M.-B. Camara, and B. Dakyo, “Energy Management Based on Frequency Approach for Hybrid Electric Vehicle Applications: Fuel-Cell/Lithium-Battery and Ultracapacitors,” IEEE Transactions on Vehicular Technology.,vol. 61, no. 8, pp. 3375-3386, 2012.
[70]M. Zandi, A. Payman, J.-P. Martin, S. Pierfederici, B. Davat, and M.-T. Farid, “Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications,” IEEE Transactions on Vehicular Technology., vol. 60, no. 2, pp. 433-443, 2010.
[71]A. Payman, S. Pierfederici, M.-T. Farid, and B. Davat, “An Adapted Control Strategy to Minimize DC-Bus Capacitors of a Parallel Fuel Cell/Ultracapacitor Hybrid System,” IEEE Transactions on Power Electronics., vol. 26, no. 12, pp. 3843-3852, 2011.
[72]A.-S. Samosir, and A.-H.-M. Yatim, “Implementation of Dynamic Evolution Control of Bidirectional DC–DC Converter for Interfacing Ultracapacitor Energy Storage to Fuel-Cell System,” IEEE Transactions on Industrial Electronics., vol. 57, no.10, pp. 3486-3473, 2010.
[73]F. Cao, J. Zhang, H. Wu, H. Hu, Y. Xing, and X. Ma, “A Dual-input Boost-Buck Converter with Coupled Inductors for TEG Applications,” 2013 IEEE Energy Conversion Congress and Exposition, pp. 2020-2025, 2013.
[74]A. Hintz, U.-R. Prasanna, and K. Rajashekara, “Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application,” IEEE Transactions on Industrial Electronics., vol. 62, no. 5, pp. 3163-3172, 2014.
[75]F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural, and I. Aksoy “A Bidirectional Nonisolated Multi-Input DC–DC Converter for Hybrid Energy Storage Systems in Electric Vehicles,” IEEE Transactions on Vehicular Technology., vol. 65, no. 10, pp. 7944-7955, 2015.
[76]徐與謙, “複合電能轉換之耦合開關矩陣設計與共用元件分析,” 國立虎尾科技大學 電機工程系 碩士學位論文, 2017.
[77]Y.-C. Syu, J.-F. Tsai, L.-K. Chiang and W.-C. Ko, “Modular Design of a General Purpose Controller for Hybrid Electric Power Conversion System,” Advances in Intelligent Information Hiding and Multimedia Signal Processing. Smart Innovation, Systems and Technologies, vol. 64. Springer, 2017.
[78]楊宗盛, “切換式電源轉換器模型建立與數位化控制器設計,” 國立虎尾科技大學電機工程系 碩士學位論文, 2018.
[79] “TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs),” Texas Instruments, 2019.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top