(3.215.180.226) 您好!臺灣時間:2021/03/06 13:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林永欣
研究生(外文):LIN, YONG-XIN
論文名稱:具多階層式峰值電流控制之低輸出漣波電壓升壓轉換器
論文名稱(外文):Low Output Voltage Ripple Boost Converter with Multi-level Peak Current Control
指導教授:陳厚銘陳厚銘引用關係
指導教授(外文):CHEN, HOU-MING
口試委員:呂啟彰黃崇禧林光浩
口試委員(外文):LU, CHI-CHANGHWANG, CHORNG-SIILIN, KUANG-HAO
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:漣波電壓控制不連續導通模式連續導通模式升壓轉換器輸出漣波電壓多階層式控制器峰值電流感測器近零電流感測器關閉時間產生器啟動電路抗振鈴電路
外文關鍵詞:ripple-based controldiscontinuous-conduction modecontinuous-conduction modeboost converteroutput voltage ripplemulti-level controllerpeak current sensornear-zero current sensoroff-time generatorstart-up circuitringing killer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以多階層式峰值電流控制技術之升壓轉換器,此技術可以有效改善升壓轉換器之輸出電壓漣波表現,並在負載暫態響應時,僅有微小的過充電壓及欠充電壓產生。藉由本論文所提出之技術,可優化全負載範圍內之漣波電壓表現,隨負載階段性改變儲能峰值電流,自適應負載改變釋能時間,使整體負載範圍內之漣波電壓皆可壓抑在10mV以下,且最小漣波電壓可壓抑在4.11mV。晶片以TSMC 0.18-μm 1P6M CMOS之製程實現,額定之輸入電壓為1.2V,輸出電壓為1.8V,可供應負載範圍為0-100mA,本技術使用輸出漣波控制為基底,在負載由0-100mA之暫態響應部分僅有10mV之欠充電壓,100-0mA則無過充電壓產生,且轉換器之操作模式具備不連續導通模式及連續導通模式,在輕載時選用不連續導通模式降低切換損失並維持漣波電壓,而在中載過後,模式選用連續導通模式以因應更大的負載需求。同時,本論文所提之升壓轉換器具備啟動電路,以抑制升壓轉換器於啟動階段產生之浪湧電流,降低晶片損壞之可能,配合電壓選擇器防止死區時的上橋開關無法完全關閉之問題,以及抗振鈴電路防止升壓轉換器操作於不連續導通模式中之死區狀態時,於電感及上下橋開關之接點處產生振鈴現象,以避免電磁干擾之相關問題。在本論文所提之升壓轉換器操作時之最高效率達90.43%,在輕載時仍然有87%以上的轉換效率,以及本論文實現之晶片面積為604.1× 683μm。
This paper proposes a boost converter with multi-level peak current control technology, which can effectively improve the output voltage ripple performance of the boost converter and have small over/under shoot during transients. By this technology, the peak inductor current can be changed in stages with the load, and the valley inductor current can be adaptive change with the load, and make the output voltage ripple in the whole load range can be suppressed below 10mV, and the minimum output voltage ripple can be suppressed at 4.11mV. This chip is implemented in a TSMC 0.18-μm 1P6M CMOS technology. The rated input voltage is 1.2V, the output voltage is 1.8V and available load range is 0-100mA. The control architecture uses the ripple based control. Only 10mV undershoot in transient response at 0 to 100mA, and no overshoot in transient response at 100 to 0mA. The operation mode of the converter has discontinuous conduction mode and continuous conduction mode. In addition, the proposed boost converter has a start-up circuit to suppress the inrush current generated during the start-up phase, and the voltage selector provides the control power for the high side bridge to avoid reverse current in dead-time. A ringing killer is added to eliminate the ringing effect when the converter operates in dead-time to reduce the EMI noise problem. Measurement results also show a maximum efficiency of 90.43% and there is still 87% at light load. And the whole chip area is 604.1× 683μm.
摘要...........................................................i
Abstract.......................................................ii
誌謝...........................................................iii
目錄...........................................................iv
圖目錄.........................................................vi
第一章 緒論....................................................1
1.1研究背景....................................................1
1.2研究動機....................................................1
1.3論文架構....................................................2
第二章 升壓轉換器...............................................3
2.1 浪湧電流....................................................3
2.2 逆向電流....................................................5
2.3 操作模式....................................................6
2.4 近年文獻....................................................7
第三章 升壓轉換器之輸出電壓漣波值探討..............................9
3.1 輸出電壓漣波變化.............................................9
3.1.1 DCM.....................................................10
3.1.2 CCM (IVal小於ILoad)......................................14
3.1.3 CCM (IVal高於ILoad)......................................18
3.2 負載暫態響應................................................22
第四章 具多階層式峰值電流控制技術之升壓轉換器......................25
4.1 電路架構及操作原理..........................................26
4.1.1 多階層式控制器............................................26
4.1.2 峰值電流感測器............................................30
4.1.3 近零電流感測器............................................35
4.1.4 關閉時間產生器............................................41
4.2 啟動電路與上橋控制..........................................46
4.3 抗振鈴電路.................................................53
第五章 電路實現與量測結果........................................56
5.1 負載調節率.................................................57
5.2 線性調節率.................................................64
5.3 負載暫態響應...............................................66
5.4 振鈴現象的抑制..............................................68
5.5 轉換效率...................................................69
5.6 整體電路效能...............................................70
第六章 結論....................................................72
參考文獻........................................................73
Extended Abstract.............................................75


[1] C. H. Huang, H. H. Wu, and C. L. Wei, “Compensator-free mixed-ripple adaptive on-time controlled boost converter,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 596-604, Feb. 2018.
[2] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-v input discontinuous-conduction-mode boost converter with cmos-control rectifier,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2236-2045, Sep. 2008.
[3] H. H. Wu, C. L. Wei, Y. C. Hsu, and R. B. Darling, “Adaptive peak-inductor-current-controlled pfm boost converter with a near-threshold start voltage and high efficiency,” IEEE Trans. Power Electron, vol. 30, no. 4, pp. 1956-1964, Apr. 2015.
[4] C. H. Huang and C. C. Chen, “A high-efficiency current-mode buck converter with a power-loss-aware switch-on-demand modulation technique for mutifunction socs,” IEEE Trans. Power Electron, vol. 31, no. 12, pp. 8303-8316, Dec. 2016.
[5] X. Jing, and P. K. T. Mok, “A fast fixed-frequency adaptive-on-time boost converter with light load efficiency enhancement and predictable noise spectrum,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2442-2455, Oct. 2013.
[6] T. Y. Man, P. K. T. Mok, and M. Chan, “An auto-selectable-frequency pulse-width modulator for buck converters with improved light-load efficiency,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 440–626.
[7] W. H. Huang, K. H. Chen, and S. Y. Kuo, “Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2036–2046, Nov. 2007.
[8] C. H. Chia, P. S. Lei, and R. C. Chang, “A high-efficiency pwm dc-dc buck converter with a novel dcm control under light-load,”IEEE International Symposium of circuits and systems (ISCAS), vol. 22, no. 8, pp. 237-240, Aug. 2011.
[9] Y. P. Su, Y. K. Luo, Y. C. Chen, and K. H. Chen, “Current-mode synthetic control technique for high-efficiency dc-dc boost converters over a wide load range,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 22, no. 8, pp. 1666-1678, Aug. 2014.
[10] H. Nam, Y. Ahn and J. Roh, "5-V buck converter using 3.3-V standard cmos process with adaptive power transistor driver increasing efficiency and maximum load capacity," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 463-471, Jan. 2012.
[11] D. Park and H. Lee, “Improvements in light-load efficiency and operation frequency for low-voltage current-mode integrated boost converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 599-603, Aug. 2014.
[12] P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani, and A. Baschirotto,“A 0.18-μm CMOS, 91%-efficiency, 2-A scalable buck-boost DC-DC converter for LED drivers,” IEEE Trans. Power Electron, vol. 29, no. 10, pp. 5392–5398, Oct. 2014.
[13] H. Chen, H. Huang, S. Jheng, H. Huang and Y. Huang, "High-Efficiency PFM Boost Converter With an Accurate Zero Current Detector," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1644-1648, Nov. 2018.
[14] Y. Hwang, A. Liu, Y. Chang, and J. Chen, “A high-efficiency fast-transient-response buck converter with analog-voltage-dynamic estimation techniques,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3720–3730, Jul. 2015.
[15] Y. Park et al., "A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter With Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications," in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6946-6960, Sept. 2017.
[16] S. Kim et al., "Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications," in IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1428-1439, Feb. 2018, doi: 10.1109/TPEL.2017.2688387.
[17] J. Chen, Y. Hwang, J. Chen, Y. Ku and C. Yu, "A New Fast-Response Current-Mode Buck Converter With Improved I2 -Controlled Techniques," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp. 903-911, May 2018, doi: 10.1109/TVLSI.2018.2796088.
[18] B. Sahu, and G. A. Rincon-Mora, “An accurate, low-voltage, cmos switching power supply with adaptive on-time pulse-frequency modulation (pfm) control,” IEEE Trans. Circuits Syst. I:Reg. Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[19] J. Chen, Y. Hwang, J. Yu, Y. Ku and C. Yu, "A Low-EMI Buck Converter Suitable for Wireless Sensor Networks With Spur-Reduction Techniques," in IEEE Sensors Journal, vol. 16, no. 8, pp. 2588-2597, April15, 2016.
[20] D. Lu, J. Yu, Z. Hong, J. Mao, H. Zhao, and E. Cirot, “A 10 MHz ripple-based on-time controlled buck converter with dual ripple compensation and real-time efficiency optimization,” Proc. Eur. Solid-State Circuits Conf, 2012, pp. 333–336.
[21] V. Michal, “Peak-efficiency detection and peak-efficiency tracking algorithm for switched-mode DC–DC power converters,” IEEE Trans. Power Electron, vol. 29, no. 12, pp. 6555–6568, Dec. 2014.
[22] L. H. Phuc, C. S. Chae, M. C. Lee, S. W. Wang, S. I. Kim, and G. H. Cho, “Integrated zero-inductor-current detection circuit for step-up dc-dc converters,” Electronics Letters, vol. 42, no. 16, pp. 943-944, Aug. 2006.
[23] W. Fu, S. T. Tan, M. Radhakrishnan, R. Byrd and A. A. Fayed, "A DCM-Only Buck Regulator With Hysteretic-Assisted Adaptive Minimum-On-Time Control for Low-Power Microcontrollers," in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 418-429, Jan. 2016.

電子全文 電子全文(網際網路公開日期:20250820)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔