(3.235.108.188) 您好!臺灣時間:2021/02/26 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俊瑋
研究生(外文):HUANG, JYUN-WEI
論文名稱:陰極電弧沉積鋁鈦矽鉻釩鋯高熵合金氮化物薄膜之機械性質研究
論文名稱(外文):Characteristics and Deposition of AlTiSiCrVZrN High Entropy Alloy Nitride Hard Coatings Prepared by Cathodic Arc Evaporation
指導教授:張銀祐
指導教授(外文):CHANG, YIN-YU
口試委員:邱薆蕙李志偉張銀祐
口試委員(外文):CHIOU, AI-HWUILEE, JYH-WEiCHANG, YIN-YU
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:高熵合金氮化物薄膜機械性質印刷電路板加工
外文關鍵詞:High Entropy AlloyNitride CoatingMechanical PropertiesPCB Milling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高熵合金是以五種或五種以上的主元素所組成之合金,每種元素原子百分比應介於5%至35%,由於四大效應:高熵效應、嚴重晶格畸變效應、延遲擴散效應與雞尾酒效應的影響,使其可根據組成元素的調配展現各種優異特性。在本研究中採用陰極電弧蒸鍍技術(CAE),於製程中使用三種不同轉架旋轉速度(1.5、2與4RPM),搭配鋁鉻矽(AlCrSi)、鈦釩(TiV)、鋯(Zr)三靶共鍍ATZ系列氮化物薄膜;再利用鋁鈦矽(AlTiSi)、鉻釩(CrV)、鋯(Zr)三靶共鍍ACZ系列氮化物薄膜,並另外鍍製AlTiSiCrV與AlCrSiTiV高熵合金薄膜,針對其結構、表面性質與機械性質的變化進行探討。
本研究藉由使用場發射掃描式電子顯微鏡(FE-SEM)與高解析穿透式電子顯微鏡(HR-TEM)觀察並分析薄膜之微結構並搭配X光能量分散光譜分析儀(EDS)測量元素成分,接著利用X光繞射分析儀(XRD)觀察薄膜之晶體結構及結晶相分析,再使用三維表面輪廓儀與水接觸角檢測薄膜的表面特徵。機械性質分析先利用洛氏壓痕試驗機評估薄膜與基材之間的附著性能,接著透過微克氏壓痕試驗機及奈米壓痕試驗機測量薄膜硬度值及彈性係數,並透過球對盤磨耗試驗機(Ball-On-Disk)觀察薄膜抗磨耗性能。最後將薄膜鍍製在微型銑刀,對印刷電路板(PCB)進行乾式循環切削測試,探討薄膜對刀具壽命的影響。
根據FE-SEM對薄膜截面觀察的結果顯示,隨轉架速度增加薄膜的週期厚度皆逐漸下降。透過HR-TEM對薄膜進行更進一步的觀察果顯示,薄膜的奈米多層週期厚度由65奈米下降至約13奈米。由X光繞射分析結果顯示,隨著轉架旋轉速度上升,所有鍍膜樣品繞射峰的數量皆逐漸減少呈現優選方位。薄膜的表面粗糙度測試結果顯示所有氮化物薄膜的粗糙度皆大幅小於高熵合金薄膜,所有樣品的水接觸角皆超過100度,呈現較佳的疏水性能與低表面能。奈米壓痕測試的結果顯示ACZ系列氮化物4RPM與ATZ系列氮化物1.5RPM的樣品同時具有較佳的韌性與較高之硬度,球對盤磨耗500公尺測試中,磨耗率與硬度試驗結果相吻合,硬度較高的樣品具有較佳的抗磨耗性能。最終將表現較佳之薄膜鍍製於刀具上,進行印刷電路板切削測試,結果顯示相較於未鍍刀具,鍍層刀具的磨損下降超過50%。
High-entropy alloys (HEA) were defined as those alloys having at least five major metallic elements each having an atomic percentage between 5% and 35%. Excellent performance can be obtained due to the four factors : high entropy effect, slow diffusion effect, severe lattice distortion and cocktail effect. In this study, a cathodic arc evaporation technology (CAE) was used to deposit AlTiSiCrVZrN HEA nitride coatings. AlCrSi, TiV, Zr targets were adopted to synthesize AlTiSiCrVZrN HEA nitride coatings named ATZ series nitride films; and use AlTiSi, CrV, Zr for the named ACZ series nitride films. Three different substrate rotation speeds (1.5, 2, 4RPM) were used in the process to control the coating structure. Microstructure, surface properties and mechanical properties were discussed.
The microstructure of the deposited coatings was characterized by using a field emission scanning electron microscope (FE-SEM) and a high-resolution transmission electron microscope (HR-TEM) and the chemical composition was measured by an energy dispersive X-ray spectrometer (EDS). X-ray diffraction (XRD) was used to determine the crystal structure and crystalline phase of the films. The surface characteristics of the coaitngs were detected using a three-dimensional surface profile microscopy and water contact angle measurement. A Rockwell indentation tester was used to evaluate the adhesion strength between the coating and the substrate. The coating hardness value and the Young's modulus were measured by nanoindentation. In addition, to study the tribological performance, a ball on disk tribometer was used to evaluate the coating's wear resistance. For the field test of cutting, printed circuit board was machined by the coated micro end mills using a milling machine.
The results of HRTEM and FESEM revealed that the ATZ and ACZ series HEA nitride coatings had a multilayer structure. The periodic thickness of the film decreased from 65 nm to approximately 13 nm for the coatings deposited with 1.5 rpm and 4 rpm, respectively. X-ray diffraction analyses showed that a trend of preferred orientation was found when the rotation speed increased. As compared to the HEA coatings, the surface roughness of ATZ and ACZ
iii
series HEA nitride coatings decreased significantly. The water contact angles of all coatings were higher than 100o, showing better hydrophobicity and low surface energy. The results of the nanoindentation test showed that the ACZ series nitride coating deposited with 4 rpm and ATZ series nitride coating deposited with 1.5 rpm had higher H/E* value and had higher resistance to plastic deformation. The higher H/E value, the better wear resistance was obtained. Finally, the coaitngs were deposited on the end mills, and the cutting test of printed circuit board was performed.
摘要 ............................................................................................................................................. i
Abstract ....................................................................................................................................... ii
誌謝 ........................................................................................................................................... iv
目錄 ............................................................................................................................................ v
表目錄 ..................................................................................................................................... viii
圖目錄 ....................................................................................................................................... ix
第一章 緒論 .............................................................................................................................. 1
1.1 前言 ................................................................................................................................. 1
1.2 研究動機與目的 ............................................................................................................. 2
第二章 文獻回顧 ...................................................................................................................... 3
2.1 氮化物薄膜 ..................................................................................................................... 3
2.1.1 氮化鋁鈦矽(AlTiSiN) .......................................................................................... 3
2.1.2 氮化鋁鉻矽(AlCrSiN) ......................................................................................... 5
2.1.3 氮化鉻釩與氮化鈦釩(CrVN and TiVN) ............................................................. 7
2.1.4 氮化鋯(ZrN) ....................................................................................................... 10
2.2 高熵合金 ....................................................................................................................... 12
2.2.1 高熵合金的發展與定義 .................................................................................... 12
2.2.2 高熵合金的四種強化理論 ................................................................................ 14
2.2.3 氮化物高熵合金薄膜概況 ................................................................................ 17
2.3印刷電路板 .................................................................................................................... 19
2.3.1 印刷電路板的加工 ............................................................................................ 19
2.3.2 印刷電路板銑削加工 ........................................................................................ 20
第三章 實驗方法 .................................................................................................................... 23
3.1 實驗流程 ....................................................................................................................... 23
3.2 薄膜設計與實驗方法 ................................................................................................... 24
3.2.1 前處理及鍍膜步驟 ............................................................................................ 24
3.2.2薄膜製程設計 ..................................................................................................... 26
3.2.3 ACZ系列AlTiSiCrVZr高熵合金及其氮化物薄膜製程設計 ......................... 26
3.2.4 ATZ系列AlCrSiTiVZr高熵合金及其氮化物薄膜製程設計 ......................... 27
3.3 薄膜微結構分析 ........................................................................................................... 28
3.3.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) ............................................................................................................................. 28
3.3.2 X光繞射分析儀(X-Ray Diffractometer, XRD) ................................................. 30
3.3.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) ....................... 32
3.4 薄膜表面性質分析 ....................................................................................................... 34
3.4.1 三維表面輪廓儀(3D-Surface Profiler) .............................................................. 34
3.4.2 水接觸角試驗機(Contact Angle Meter) ............................................................ 35
3.5 薄膜機械性質分析 ....................................................................................................... 36
3.5.1 洛氏硬度試驗機(Rockwell Hardness) .............................................................. 36
3.5.2 微小維克氏硬度試驗(Micro Vickers Hardness Test) ....................................... 38
3.5.3 奈米壓痕試驗(Nano-indentation) ...................................................................... 39
3.5.4 球對盤磨耗試驗(Ball-on-Disc Wear Test) ....................................................... 40
3.6 印刷電路板切削測試 ................................................................................................... 41
3.6.1 印刷電路板 ........................................................................................................ 41
3.6.2 加工機台與切削方式 ........................................................................................ 42
第四章 結果與討論 ................................................................................................................ 45
4.1 薄膜微結構分析 ........................................................................................................... 45
4.1.1 SEM微結構及EDS元素成分分析 ................................................................... 45
4.1.2 X光繞射分析 ..................................................................................................... 51
4.1.3 ACZN4與ACZN1.5之TEM微結構分析 ....................................................... 53
4.2 薄膜表面性質分析 ....................................................................................................... 59
4.2.1 表面形貌分析 .................................................................................................... 59
4.2.1 水接觸角分析 .................................................................................................... 61
4.2 薄膜機械性質分析 ....................................................................................................... 63
4.2.1 洛氏壓痕分析 .................................................................................................... 63
4.2.2 微小維克氏硬度分析 ........................................................................................ 64
4.2.3 奈米壓痕分析 .................................................................................................... 65
4.2.4球對盤磨耗試驗分析 ......................................................................................... 67
4.5 切削電路板測試 ........................................................................................................... 71
第五章 結論 ............................................................................................................................ 74
參考文獻 .................................................................................................................................. 76
Extended Abstract..................................................................................................................... 82
1. Buhl, R., H.K. Pulker, and E. Moll, TiN coatings on steel. Thin Solid Films, 1981. 80(1): p. 265-270.
2. Veprek, S. and M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008. 202(21): p. 5063-5073.
3. Veprek, S., et al., Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/a-Si3N4 nanocomposite. Materials Science and Engineering: A, 2004. 366(1): p. 202-205.
4. Veprek, S. and M.G.J. Veprek-Heijman, The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites. Surface and Coatings Technology, 2007. 201(13): p. 6064-6070.
5. Ardila-Téllez, L., J. Sanchez, and C. Moreno-Téllez, Effect of Silicon Addition on Microstructure and Mechanical Properties of Chromium and Titanium Based Coatings. REVISTA FACULTAD DE INGENIERÍA, 2014. 23: p. 9.
6. Tanaka, Y., et al., Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surface and Coatings Technology, 2001. 146-147: p. 215-221.
7. Chiba, Y., T. Omura, and H. Ichimura, Wear resistance of arc ion-plated chromium nitride coatings. Journal of Materials Research, 1993. 8(5): p. 1109-1115.
8. Sugishima, A., H. Kajioka, and Y. Makino, Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method. Surface and Coatings Technology, 1997. 97(1): p. 590-594.
9. Kawate, M., A. Kimura Hashimoto, and T. Suzuki, Oxidation resistance of Cr1−XAlXN and Ti1−XAlXN films. Surface and Coatings Technology, 2003. 165(2): p. 163-167.
10. Souza, P.S., et al., Analysis of the surface energy interactions in the tribological behavior of ALCrN and TIAlN coatings. Tribology International, 2020. 146: p. 106206.
11. Polcar, T. and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surface and Coatings Technology, 2011. 206(6): p. 1244-1251.
12. Ding, X.-z., X.T. Zeng, and Y.C. Liu, Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc. Thin Solid Films, 2011. 519(6): p. 1894-1900.
13. Panjan, P., et al., Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering. Thin Solid Films, 2015. 591: p. 323-329.
14. Kämper, A., I. Hahndorf, and M. Baerns, A molecular mechanics study of the adsorption of ethane and propane on V2O5(001) surfaces with oxygen vacancies. Topics in Catalysis, 2000. 11-12: p. 77-84.
15. Uchida, M., et al., Friction and wear properties of CrAlN and CrVN films deposited by cathodic arc ion plating method. Surface and Coatings Technology, 2004. 177-178: p. 627-630.
16. Chang, Y.-Y., et al., High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surface and Coatings Technology, 2017. 332: p. 494-503.
17. Niinomi, M., Recent Metallic Materials for Biomedical Applications. Metallurgical and Materials Transactions A, 2002. 33: p. 477-486.
18. van Leaven, L., M.N. Alias, and R. Brown, Corrosion behavior of ion plated and implated films. Surface and Coatings Technology, 1992. 53(1): p. 25-34.
19. Xin, Y., et al., Corrosion behavior of ZrN/Zr coated biomedical AZ91 magnesium alloy. Surface and Coatings Technology, 2009. 203(17): p. 2554-2557.
20. Larijani, M.M., et al., Nitrogen effect on corrosion resistance of ion beam sputtered nanocrystalline zirconium nitride films. Surface and Coatings Technology, 2009. 203(17): p. 2591-2594.
21. Hsiao, C.-H., Synthesis and characterization of zirconia films on air-based sputtering deposited ZrN/Si by plasma electrolytic oxidation. 2014.
22. Floroian, L., et al., Titanium implants’ surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films. Applied Surface Science, 2017. 417: p. 175-182.
23. Huang, S.-H., et al., Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surface and Coatings Technology, 2011. 206(7): p. 1744-1752.
24. Chang, Y.-Y. and C.-J. Wu, Mechanical properties and impact resistance of multilayered TiAlN/ZrN coatings. Surface and Coatings Technology, 2013. 231: p. 62-66.
25. Murty, B.S., J.W. Yeh, and S. Ranganathan, Chapter 1 - A Brief History of Alloys and the Birth of High-Entropy Alloys, in High Entropy Alloys, B.S. Murty, J.W. Yeh, and S. Ranganathan, Editors. 2014, Butterworth-Heinemann: Boston. p. 1-12.
26. Chen, T.K., et al., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2004. 188-189: p. 193-200.
27. Hsu, C.-Y., et al., Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition. Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science - METALL MATER TRANS A, 2004. 35: p. 1465-1469.
28. Huang, P.K., et al., Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Advanced Engineering Materials, 2004. 6: p. 74-78.
29. Yeh, J.W., Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced engineering materials, 2004. 6(5): p. 229-303.
30. Chen, T.-K., et al., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2005. 200(5): p. 1361-1365.
31. Yeh, J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): p. 1759-1771.
32. Lu, Z.P., et al., An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 2015. 66: p. 67-76.
33. 葉均蔚, 高熵合金的發展. 華岡工程學報, 2011. 27: p. 1-18.
34. Zhang, Y., High-Entropy Materials: A Brief Introduction. 2019.
35. MacDonald, B., et al., Recent Progress in High Entropy Alloy Research. JOM, 2017. 69: p. 2024-2031.
36. Yeh, J.-W., Recent progress in high-entropy alloys. European Journal of Control - EUR J CONTROL, 2006. 31: p. 633-648.
37. Pu, Y., et al., Dielectric properties and electrocaloric effect of high-entropy (Na 0.2 Bi 0.2 Ba 0.2 Sr 0.2 Ca 0.2 )TiO 3 ceramic. Applied Physics Letters, 2019. 115: p. 223901.
38. Neto Antão, F.J., HEAs: High Entropy Alloys for advanced systems and engines Examination Committee. 2020.
39. Bo, R., Z. Ruifeng, and L. Zhongxia, Advances in Nitride Films of High Entropy Alloy. 材料导报, 2017. 31(11): p. 44-50.
40. Feng, X., et al., Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 301: p. 29-35.
41. Hsueh, H.-T., et al., Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surface and Coatings Technology, 2012. 206(19): p. 4106-4112.
42. Tsai, D.-C., et al., Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering. Applied Surface Science, 2010. 257(4): p. 1361-1367.
43. Huang, P.-K. and J.-W. Yeh, Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surface and Coatings Technology, 2009. 203(13): p. 1891-1896.
44. Tsai, D.-C., et al., Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering. Journal of Alloys and Compounds, 2014. 616: p. 646-651.
45. Lin, Y.-H., Hard Nitride Films of AlxCrNbTaTiZr Alloy Prepared by RF Dual Magnetron Sputtering Techniques. 2007.
46. Chang, H.-W., et al., Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surface and Coatings Technology, 2008. 202(14): p. 3360-3366.
47. Lai, C.-H., et al., Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology, 2007. 201(16): p. 6993-6998.
48. Tsai, D.-C., et al., Interfacial reactions and characterization of (TiVCrZrHf)N thin films during thermal treatment. Surface and Coatings Technology, 2014. 240: p. 160-166.
49. Lin, C.H., J.G. Duh, and J.W. Yeh, Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surface and Coatings Technology, 2007. 201(14): p. 6304-6308.
50. Cheng, K.-H., et al., Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 2011. 519(10): p. 3185-3190.
51. Tsai, D.-C., et al., Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering. Applied Surface Science, 2013. 282: p. 789-797.
52. Ren, B., Z. Shen, and Z. Liu, Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering. Journal of Alloys and Compounds, 2013. 560: p. 171-176.
53. Ren, B., et al., Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering. Applied Surface Science, 2011. 257(16): p. 7172-7178.
54. Ren, B., et al., Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering. Surface and Coatings Technology, 2013. 235: p. 764-772.
55. Hsieh, M.-H., et al., Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 2013. 221: p. 118-123.
56. 王士維, A Study on Nitride Films of Six、Seven and Eight Elements High-Entropy Alloy Prepared by RF Magnetron Sputtering. 2006.
57. Nyemchenko, U., et al., Wear resistance of the multicomponent coatings of the (Ti-Zr-Hf-V-Nb-Ta)N system at elevated temperature. Journal of Superhard Materials, 2015. 37: p. 322-326.
58. 過玉清, PCB的数控钻铣雕刻机制板. 管理与财富, 2009. 6: p. 125-125.
59. 肖波涛, 铣板毛刺的产生原因及对策. 印制电路信息, 2006. 12.
60. Rahman, M., A. Senthil Kumar, and J.R.S. Prakash, Micro milling of pure copper. Journal of Materials Processing Technology, 2001. 116(1): p. 39-43.
61. Sorgato, M., R. Bertolini, and S. Bruschi, On the correlation between surface quality and tool wear in micro–milling of pure copper. Journal of Manufacturing Processes, 2020. 50: p. 547-560.
62. Lin, Z.-C. and C.-Y. Ho, Performance of coated tungsten carbide tools on milling printed circuit board. Journal of Materials Processing Technology, 2009. 209(1): p. 303-309.
63. Hao, W., Application of vacuum ion plating technology for drilling and routing in PCB industry. 印制电路信息, 2011. 7.
64. Jusman, Y., S. Ng, and N.A. Abu Osman, Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX. Scientific World Journal, 2014.
65. 林麗娟, X光繞射原理及其應用. 工業材料雜誌, 1994. 86: p. 100-109.
66. Prasad, D., Defining a relationship between pearlite morphology and ferrite crystallographic orientation. Acta Materialia, 2017. 129: p. 278-289.
67. Principle of TEM. Atomic world.
68. 陳建淼 and 洪連輝, 穿透式電子顯微鏡. 科學Online, 2009.
69. 張育唐 and 陳藹然, 接觸角. 科學Online, 2011.
70. 26443 and I.S.I., Fine ceramics (advanced ceramics, advancd technical ceramics)-Rockwell indentation test for evaluation of adhesion of ceramic coatings. 2008.
71. Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167.
72. FR-4. WIKIPEDIA, 2020.
73. Zhirkov, I., A. Petruhins, and J. Rosen, Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti–Al compound cathodes. Surface and Coatings Technology, 2015. 281: p. 20-26.
74. Hahn, R., et al., Toughness of Si alloyed high-entropy nitride coatings. Materials Letters, 2019. 251: p. 238-240.
75. Tsai, D.-C., et al., Structural and mechanical properties of magnetron sputtered Ti–V–Cr–Al–N films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 310: p. 93-98.
76. Chang, Z.-C., et al., Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010. 268(16): p. 2504-2509.
77. Xu, Y., G. Li, and Y. Xia, Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS. Applied Surface Science, 2020. 523: p. 146529.
78. Chen, D.-J., et al., Study on Modulation Period and Mechanical Properties of TiN/AlN nano-multilayers Film. Vacuum, 2007: p. 52-54.
79. Holleck, H. and V. Schier, Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995. 76-77: p. 328-336.
80. Musil, J. and M. Jirout, Toughness of hard nanostructured ceramic thin films. Surface and Coatings Technology, 2007. 201(9): p. 5148-5152.

電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔