跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁清嫻
研究生(外文):DINH THANH NHAN
論文名稱:從生產與財務效率的觀點探究中國基金管理公司的競爭力
論文名稱(外文):The Competitiveness of China Fund Management Firms: Production and Financial Efficiency Perspectives
指導教授:郭國誠郭國誠引用關係
指導教授(外文):Kuo-Cheng Kuo
口試委員:任立中陳厚銘周建享盧文民郭國誠
口試委員(外文):Ren, Li ZhongChen, Ho MingChou, Chien HengLu, Wen MinKuo, Kuo Cheng
口試日期:2020-05-15
學位類別:博士
校院名稱:中國文化大學
系所名稱:國際企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:86
外文關鍵詞:China fund management firmChina stock marketcompetitivenessnetwork DEAstock selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
During the last 20 years, China fund management firms have become one of the fastest-growing forces in Asia which turn to the second-largest asset management market globally. To meet the practice, this research aims to study the competitiveness of China fund management firms in the perspectives of production and financial efficiencies. Due to the main operation of these fund management firms is trading stocks in their portfolios, their competitiveness largely depends on defining the potential stocks to hold. Fund managers normally employ fundamental or technical analysis approach to evaluate the profitability of stock before choosing it into their fund’s portfolio. Reviewing the complementary applications in creating the insight of listed stocks, this paper employs meta-frontier and group frontier of two-stage network directional distance function to measure the production and financial efficiency scores. Next, the categories of stocks for investing in priority are identified. Later then, these efficiency scores and categories that are considered as references to the fund management firms’ investment decisions could have an impact on firms’ performances. 1. The quarterly data of investment portfolio and performance of China fund management firms; 2. The quarterly data of listed firms in China stock markets extracted from the financial statements and stock market indicators. The empirical findings prove that the fundamental and technical analysis and their integration are suitable in identifying the promised future return stocks with a proposed stock selection strategy classified into Star, Cash Cow, Risky, and Dumpling categories. Furthermore, China fund management firms approve higher competitiveness if their investment portfolio contains relatively high-efficiency score stocks. In conclusion, this study has two main contributions. In terms of methodology contribution, this research first takes advantage of the meta-frontier and group frontiers of the two-stage network directional distance function in the area of the financial market to explore the integration of fundamental and technical analysis. In terms of application contribution, the proposed stock selection strategy that composes multiple preferences of stock characteristics into funds’ portfolio is firms’ competitiveness that is expected to support or orient fund managers to select stocks and to improve their performance.
ABSTRACT iii
ACKNOWLEDGEMENT v
LIST OF FIGURES viii
LIST OF TABLES ix
CHAPTER ONE INTRODUCTION - 1 -
1.1 Research Background and Motivations - 1 -
1.1.1. China Fund Management Firms - 1 -
1.1.2. China Stock Market - 2 -
1.1.3. Stock Selection - 4 -
1.2. Research Objectives and Contributions - 6 -
1.3. Research Process and Structure - 8 -
CHAPTER TWO LITERATURE REVIEW - 10 -
2.1. Theoretical foundation - 10 -
2.2. Fundamental and Technical Analysis in Stock Selection - 11 -
2.3. Researches on China Stock Market - 13 -
2.4. Data Envelopment Analysis and Stock Selection - 15 -
2.5. Hypotheses Development - 17 -
CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY - 21 -
3.1. Research Design - 21 -
3.1.1. Research Framework - 21 -
3.1.2. Measures of Production Process and Financial Production Process - 21 -
3.1.3. Measures of Returns - 24 -
3.1.4. Regression models - 25 -
3.1.5. Data Collection - 27 -
3.2. The Meta-frontier and Group-frontier of Two-stage Network Directional Distance Function - 29 -
CHAPTER FOUR RESEARCH RESULTS - 34 -
4.1. Descriptive Statistics - 34 -
4.2. Performance Analysis - 45 -
4.4. Proposed Stock Selection Strategy - 48 -
4.3. Hypothesis Tests - 54 -
CHAPTER FIVE DISCUSSION AND CONCLUSION - 58 -
5.1. Conclusions and Contributions - 58 -
5.2. Discussions and Implications - 59 -
5.3. Limitations and Future Research - 59 -
REFERENCES - 61 -
APPENDICES - 74 -
A1. Data Envelopment Analysis - 74 -
A1.1 Traditional DEA - 74 -
A1.2. Network Data Envelopment Analysis - 75 -
A2. Directional Function Distance - 76 -



Abarbanell, J. S., & Bushee, B. J. (1998). Abnormal returns to a fundamental analysis strategy. Accounting Review, 19-45.
Aggarwal, R., Klapper, L., & Wysocki, P. (2003). Portfolio preferences of foreign institutional investors: The World Bank.
Alam, I. M. S., & Sickles, R. C. (1998). The relationship between stock market returns and technical efficiency innovations: evidence from the US airline industry. Journal of Productivity Analysis, 9(1), 35-51.
Alexakis, C., Patra, T., & Poshakwale, S. (2010). Predictability of stock returns using financial statement information: evidence on semi-strong efficiency of emerging Greek stock market. Applied Financial Economics, 20(16), 1321-1326.
Amin, G. R., & Hajjami, M. (2016). Application of optimistic and pessimistic owa and dea methods in stock selection. International Journal of Intelligent Systems, 31(12), 1220-1233.
Asness, C. S. (1997). The interaction of value and momentum strategies. Financial Analysts Journal, 53(2), 29-36.
Aviles-Sacoto, S., Cook, W. D., Imanirad, R., & Zhu, J. (2015). Two-stage network DEA: when intermediate measures can be treated as outputs from the second stage. Journal of the operational research society, 66(11), 1868-1877.
Avkiran, N. K., & Morita, H. (2010). Predicting Japanese bank stock performance with a composite relative efficiency metric: A new investment tool. Pacific-Basin Finance Journal, 18(3), 254-271.
Bae, S. C., Min, J. H., & Jung, S. (2011). Trading behavior, performance, and stock preference of foreigners, local institutions, and individual investors: Evidence from the Korean stock market. Asia‐Pacific Journal of Financial Studies, 40(2), 199-239.
Banegas, A., Gillen, B., Timmermann, A., & Wermers, R. (2013). The cross section of conditional mutual fund performance in European stock markets. Journal of Financial Economics, 108(3), 699-726.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Barras, L., Scaillet, O., & Wermers, R. (2010). False discoveries in mutual fund performance: Measuring luck in estimated alphas. The Journal of Finance, 65(1), 179-216.
Barroso, P., & Santa-Clara, P. (2015). Momentum has its moments. Journal of Financial Economics, 116(1), 111-120.
Baytas, A., & Cakici, N. (1999). Do markets overreact: International evidence. Journal of Banking & Finance, 23(7), 1121-1144.
Beltratti, A., Bortolotti, B., & Caccavaio, M. (2016). Stock market efficiency in China: evidence from the split-share reform. The Quarterly Review of Economics and Finance, 60, 125-137.
Bettman, J. L., Sault, S. J., & Schultz, E. L. (2009). Fundamental and technical analysis: substitutes or complements? Accounting & Finance, 49(1), 21-36.
Białkowski, J., & Otten, R. (2011). Emerging market mutual fund performance: Evidence for Poland. The North American Journal of Economics and Finance, 22(2), 118-130.
Bird, R., Gao, X., & Yeung, D. (2017). Time-series and cross-sectional momentum strategies under alternative implementation strategies. Australian Journal of Management, 42(2), 230-251.
Bird, R., & Whitaker, J. (2004). The performance of value and momentum investment portfolios: Recent experience in the major European markets Part 2. Journal of Asset Management, 5(3), 157-175.
Blake, C. R., Elton, E. J., & Gruber, M. J. (1993). The performance of bond mutual funds. Journal of business, 371-403.
Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764.
•Carpenter, J. N., & Whitelaw, R. F. (2017). The development of China's stock market and stakes for the global economy. Annual Review of Financial Economics , 9, 233-257.


Chan, L. K., Hamao, Y., & Lakonishok, J. (1993). Can fundamentals predict Japanese stock returns? Financial Analysts Journal, 49(4), 63-69.
Chang, E. C., Luo, Y., & Ren, J. (2014). Short-selling, margin-trading, and price efficiency: Evidence from the Chinese market. Journal of Banking & Finance, 48, 411-424.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
Chen, Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170-1176.
Chen, & Zhu, J. (2017). Second order cone programming approach to two-stage network data envelopment analysis. European Journal of Operational Research, 262(1), 231-238.
Chen, C. R., Lee, C. F., Rahman, S., & Chan, A. (1992). A Cross-Sectional Analysis Of Mutual Funds’market Timing and Security Selection Skill. Journal of Business Finance & Accounting, 19(5), 659-675.
Chen, H.-H. (2008). Stock selection using data envelopment analysis. Industrial Management & Data Systems, 108(9), 1255-1268.
Chen, H., Han, Q., Li, Y., & Wu, K. (2013). Does index futures trading reduce volatility in the Chinese stock market? A panel data evaluation approach. Journal of Futures Markets, 33(12), 1167-1190.
Chen, J., Hong, H., Jiang, W., & Kubik, J. D. (2013). Outsourcing mutual fund management: Firm boundaries, incentives, and performance. The Journal of Finance, 68(2), 523-558.
Chen, J., Jiang, F., Li, H., & Xu, W. (2016). Chinese stock market volatility and the role of US economic variables. Pacific-Basin Finance Journal, 39, 70-83.
Chen, J., Jiang, F., & Tong, G. (2017). Economic policy uncertainty in China and stock market expected returns. Accounting & Finance, 57(5), 1265-1286.
Chen, X., Kim, K. A., Yao, T., & Yu, T. (2010). On the predictability of Chinese stock returns. Pacific-Basin Finance Journal, 18(4), 403-425.
Chen, Y., Ferson, W., & Peters, H. (2010). Measuring the timing ability and performance of bond mutual funds. Journal of Financial Economics, 98(1), 72-89.
Chiu, C. R., Chiu, Y. H., Chen, Y. C., & Fang, C. L. (2016). Exploring the source of metafrontier inefficiency for various bank types in the two-stage network system with undesirable output. Pacific-Basin Finance Journal, 36, 1-13.
Cho, S. Y., Lee, C., & Pfeiffer Jr, R. J. (2013). Corporate social responsibility performance and information asymmetry. Journal of Accounting and Public Policy, 32(1), 71-83.
Choi, J., Kim, Y. S., & Mitov, I. (2015). Reward-risk momentum strategies using classical tempered stable distribution. Journal of Banking & Finance, 58, 194-213.
Chong, T. T. L., Lam, T. H., & Yan, I. K. M. (2012). Is the Chinese stock market really inefficient? China Economic Review, 23(1), 122-137.
Chow, G. C., & Lawler, C. C. (2003). A time series analysis of the Shanghai and New York stock price indices. Annals of Economics and Finance, 4, 17-36.
Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of environmental management, 51(3), 229-240.
Coller, M., & Yohn, T. L. (1997). Management forecasts and information asymmetry: An examination of bid-ask spreads. Journal of Accounting Research, 35(2), 181-191.
Cook, W. D., Zhu, J., Bi, G., & Yang, F. (2010). Network DEA: Additive efficiency decomposition. European Journal of Operational Research, 207(2), 1122-1129.
Covrig, V., Lau, S. T., & Ng, L. (2006). Do domestic and foreign fund managers have similar preferences for stock characteristics? A cross-country analysis. Journal of International Business Studies, 37(3), 407-429.
Cuthbertson, K., & Nitzsche, D. (2013). Performance, stock selection and market timing of the German equity mutual fund industry. Journal of Empirical Finance, 21, 86-101.
Cuthbertson, K., Nitzsche, D., & O'Sullivan, N. (2008). UK mutual fund performance: Skill or luck? Journal of Empirical Finance, 15(4), 613-634.
Dahlquist, M., & Robertsson, G. (2001). Direct foreign ownership, institutional investors, and firm characteristics. Journal of Financial Economics, 59(3), 413-440.
Dechow, P. M., Hutton, A. P., Meulbroek, L., & Sloan, R. G. (2001). Short-sellers, fundamental analysis, and stock returns. Journal of Financial Economics, 61(1), 77-106.
Deng, S., Wang, C., Wang, M., & Sun, Z. (2019). A gradient boosting decision tree approach for insider trading identification: An empirical model evaluation of China stock market. Applied Soft Computing, 83, 105652.
Deng, Y., & Xu, Y. (2011). Do institutional investors have superior stock selection ability in China? China Journal of Accounting Research, 4(3), 107-119.
Edirisinghe, N., & Zhang, X. (2010). Input/output selection in DEA under expert information, with application to financial markets. European Journal of Operational Research, 207(3), 1669-1678.
Edirisinghe, N. C., & Zhang, X. (2007). Generalized DEA model of fundamental analysis and its application to portfolio optimization. Journal of Banking & Finance, 31(11), 3311-3335.
Edirisinghe, N. C. P., & Zhang, X. (2008). Portfolio selection under DEA-based relative financial strength indicators: case of US industries. Journal of the operational research society, 59(6), 842-856.
Emrouznejad, A., & Yang, G.-l. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8.
Falkenstein, E. G. (1996). Preferences for stock characteristics as revealed by mutual fund portfolio holdings. The Journal of Finance, 51(1), 111-135.
Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics letters, 50(1), 65-70.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
Fernandez, E., Navarro, J., Solares, E., & Coello, C. C. (2019). A novel approach to select the best portfolio considering the preferences of the decision maker. Swarm and Evolutionary Computation, 46, 140-153.
Fisher, G. S., Shah, R., & Titman, S. (2015). Combining value and momentum. Journal of Investment Management, Forthcoming.
Fried, H. O., Lovell, C. K., Schmidt, S. S., & Schmidt, S. S. (2008). The measurement of productive efficiency and productivity growth: Oxford University Press.
Fu, J., & Lu, H. (2014). Structural changes in Chinese stock market: a review of empirical research. China Accounting and Finance Review, 16, 39-65.
Fukuyama, H., & Weber, W. L. (2010). A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega, 38(5), 398-409.
Gompers, P. A., & Metrick, A. (2001). Institutional investors and equity prices. The quarterly journal of Economics, 116(1), 229-259.
Gordon, M. J., & Shapiro, E. (1956). Capital equipment analysis: the required rate of profit. Management science, 3(1), 102-110.
Greig, A. C. (1992). Fundamental analysis and subsequent stock returns. Journal of Accounting and Economics, 15(2-3), 413-442.
Grinblatt, M., Titman, S., & Wermers, R. (1995). Momentum investment strategies, portfolio performance, and herding: A study of mutual fund behavior. The American economic review, 1088-1105.
Groenewold, N., Tang, S. H. K., & Wu, Y. (2003). The efficiency of the Chinese stock market and the role of the banks. Journal of Asian Economics, 14(4), 593-609.
Groenewold, N., Tang, S. H. K., & Yanrui, W. (2004). The dynamic interrelationships between the greater China share markets. China Economic Review, 15(1), 45-62.
Gu, M., Kang, W., & Xu, B. (2018). Limits of arbitrage and idiosyncratic volatility: Evidence from China stock market. Journal of Banking & Finance, 86, 240-258.
Guerard Jr, J. B., Markowitz, H., & Xu, G. (2015). Earnings forecasting in a global stock selection model and efficient portfolio construction and management. International Journal of Forecasting, 31(2), 550-560.
Guo, C., Shureshjani, R. A., Foroughi, A. A., & Zhu, J. (2017). Decomposition weights and overall efficiency in two-stage additive network DEA. European Journal of Operational Research, 257(3), 896-906.
Harvey, C. R., Liu, Y., & Zhu, H. (2016). … and the cross-section of expected returns. The Review of Financial Studies, 29(1), 5-68.
Hayat, R., & Kraeussl, R. (2011). Risk and return characteristics of Islamic equity funds. Emerging Markets Review, 12(2), 189-203.
Holland, J. (2016). A behavioural theory of the fund management firm. The European Journal of Finance, 22(11), 1004-1039.
Hong, K., & Wu, E. (2016). The roles of past returns and firm fundamentals in driving US stock price movements. International Review of Financial Analysis, 43, 62-75.
Hu, C., Liu, X., Pan, B., Chen, B., & Xia, X. (2018). Asymmetric impact of oil price shock on stock market in China: A combination analysis based on SVAR model and NARDL model. Emerging Markets Finance and Trade, 54(8), 1693-1705.
Huij, J., & Post, T. (2011). On the performance of emerging market equity mutual funds. Emerging Markets Review, 12(3), 238-249.
Hung, J. C. (2009). Deregulation and liberalization of the Chinese stock market and the improvement of market efficiency. The Quarterly Review of Economics and Finance, 49(3), 843-857.
Hwang, S. N., Chuang, W.-C., & Chen, Y.-C. (2010). Formulate stock trading strategies using DEA: a Taiwanese case. INFOR: Information Systems and Operational Research, 48(2), 75-81.
Iqbal, A., & Tauni, M. Z. (2016). Performance persistence in institutional investment management: The case of Chinese equity funds. Borsa Istanbul Review, 16(3), 146-156.
Jin, X., Chen, Z., & Yang, X. (2019). Economic policy uncertainty and stock price crash risk. Accounting & Finance, 58(5), 1291-1318.
Kang, J., Liu, M.-H., & Ni, S. X. (2002). Contrarian and momentum strategies in the China stock market: 1993–2000. Pacific-Basin Finance Journal, 10(3), 243-265.
Kao, C. (2014). Network data envelopment analysis: A review. European Journal of Operational Research, 239(1), 1-16.
Kao, C., & Hwang, S.-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418-429.
Khan, M. T. I., & Tan, S.-H. (2019). Stated Preferences for Firm’s Characteristics and Asset Allocation Decisions. Global Business Review, 0972150919844895.
Kiymaz, H. (2015). A performance evaluation of Chinese mutual funds. International Journal of Emerging Markets, 10(4), 820-836.
Ko, K., Kim, K., & Cho, S. H. (2007). Characteristics and performance of institutional and foreign investors in Japanese and Korean stock markets. Journal of the Japanese and International Economies, 21(2), 195-213.
Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision support systems, 37(4), 567-581.
Li, X. M. (2017). New evidence on economic policy uncertainty and equity premium. Pacific-Basin Finance Journal, 46, 41-56.
Li, X. M. (2003). China: further evidence on the evolution of stock markets in transition economies. Scottish Journal of Political Economy, 50(3), 341-358.
Li, Y., Chen, Y., Liang, L., & Xie, J. (2012). DEA models for extended two-stage network structures. Omega, 40(5), 611-618.
Lim, S., Oh, K. W., & Zhu, J. (2014). Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. European Journal of Operational Research, 236(1), 361-368.
Lima, M. J. S., & Carvalho, L. C. (2018). Collaboration: The Path to SME Performance Increase–A Case Study in a Portuguese Wine Region Handbook of Research on Entrepreneurial Ecosystems and Social Dynamics in a Globalized World (pp. 243-259): IGI Global.
Lin, Q. (2018). Technical analysis and stock return predictability: An aligned approach. Journal of financial markets, 38, 103-123.
Liu, Lu, L. Y., Lu, W. M., & Lin, B. J. (2013). A survey of DEA applications. Omega, 41(5), 893-902.
Liu, N., Bredin, D., Wang, L., & Yi, Z. (2014). Domestic and foreign institutional investors’ behavior in China. The European Journal of Finance, 20(7-9), 728-751.
Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The Journal of Finance, 55(4), 1705-1765.
Luo, Y., Ren, J., & Wang, Y. (2015). Misvaluation comovement, market efficiency and the cross-section of stock returns: Evidence from China. Economic Systems, 39(3), 390-412.
Malkiel, B. G. (2003). Passive investment strategies and efficient markets. European Financial Management, 9(1), 1-10.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
Mashayekhi, Z., & Omrani, H. (2016). An integrated multi-objective Markowitz–DEA cross-efficiency model with fuzzy returns for portfolio selection problem. Applied Soft Computing, 38, 1-9.
Menkhoff, L. (2010). The use of technical analysis by fund managers: International evidence. Journal of Banking & Finance, 34(11), 2573-2586.
Menkhoff, L., & Taylor, M. P. (2007). The obstinate passion of foreign exchange professionals: technical analysis. Journal of Economic Literature, 45(4), 936-972.
Miao, H., Ramchander, S., Wang, T., & Yang, D. (2017). Role of index futures on China's stock markets: Evidence from price discovery and volatility spillover. Pacific-Basin Finance Journal, 44, 13-26.
Naughton, T., Truong, C., & Veeraraghavan, M. (2008). Momentum strategies and stock returns: Chinese evidence. Pacific-Basin Finance Journal, 16(4), 476-492.
Nazário, R. T. F., e Silva, J. L., Sobreiro, V. A., & Kimura, H. (2017). A literature review of technical analysis on stock markets. The Quarterly Review of Economics and Finance, 66, 115-126.
Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G. (2014). Forecasting the equity risk premium: the role of technical indicators. Management science, 60(7), 1772-1791.
Ng, L., & Wu, F. (2007). The trading behavior of institutions and individuals in Chinese equity markets. Journal of Banking & Finance, 31(9), 2695-2710.
Nie, H., Jiang, Y., & Yang, B. (2018). Do different time horizons in the volatility of the US stock market significantly affect the China ETF market? Applied Economics Letters, 25(11), 747-751.
Novy-Marx, R. (2012). Is momentum really momentum? Journal of Financial Economics, 103(3), 429-453.
Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2019). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 1-51.
O’Donnell, C. J., Rao, D. P., & Battese, G. E. (2008). Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical economics, 34(2), 231-255.
Oh, D.-h., & Lee, J.-d. (2010). A metafrontier approach for measuring Malmquist productivity index. Empirical Economics, 38(1), 47-64.
Ohlson, J. A. (1995). Earnings, book values, and dividends in equity valuation. Contemporary accounting research, 11(2), 661-687.
Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11(4), 295-329.
Özçelik, S. E. (2020). Evaluation of Firm Performances in Emerging Markets Handbook of Research on Increasing the Competitiveness of SMEs (pp. 329-354): IGI Global.
Pan, L., & Mishra, V. (2018). Stock market development and economic growth: Empirical evidence from China. Economic Modelling, 68, 661-673.
Paradi, J. C., Sherman, H. D., & Tam, F. K. (2017). Data envelopment analysis in the financial services industry: A guide for practitioners and analysts working in operations research using DEA (Vol. 266): Springer.
Pätäri, E., Karell, V., Luukka, P., & Yeomans, J. S. (2018). Comparison of the multicriteria decision-making methods for equity portfolio selection: The US evidence. European Journal of Operational Research, 265(2), 655-672.
Pätäri, E., Leivo, T., & Honkapuro, S. (2012). Enhancement of equity portfolio performance using data envelopment analysis. European Journal of Operational Research, 220(3), 786-797.
Pätäri, E. J., Leivo, T. H., & Samuli Honkapuro, J. (2010). Enhancement of value portfolio performance using data envelopment analysis. Studies in Economics and Finance, 27(3), 223-246.
Penman, S. H. (1992). Return to fundamentals. Journal of Accounting, Auditing & Finance, 7(4), 465-483.
Piotroski, J. D. (2000). Value investing: The use of historical financial statement information to separate winners from losers. Journal of Accounting Research, 38, 1-52.
Pollet, J. M., & Wilson, M. (2010). Average correlation and stock market returns. Journal of Financial Economics, 96(3), 364-380.
Rachev, S., Jašić, T., Stoyanov, S., & Fabozzi, F. J. (2007). Momentum strategies based on reward-isk stock selection criteria. Journal of Banking & Finance, 31(8), 2325-2346.
Rakhshan, S. A. (2017). Efficiency ranking of decision making units in data envelopment analysis by using TOPSIS-DEA method. Journal of the operational research society, 68(8), 906-918.
Rey, D. M., & Schmid, M. M. (2007). Feasible momentum strategies: Evidence from the Swiss stock market. Financial Markets and Portfolio Management, 21(3), 325-352.
Rhodes, E. L. (1978). Data envelopment analysis and related approaches for measuring the efficiency of decision-making units with an application to program follow-through in US education. Carnegie-Mellon University.
Ross, S. (1976). The arbitrage theory of capital asset pricing, Journal of Economic Theory: Elsevier, Amsterdam.
Rua, A., & Nunes, L. C. (2009). International comovement of stock market returns: A wavelet analysis. Journal of Empirical Finance, 16(4), 632-639.
Samaras, G. D., Matsatsinis, N. F., & Zopounidis, C. (2008). A multicriteria DSS for stock evaluation using fundamental analysis. European Journal of Operational Research, 187(3), 1380-1401.
Seddighi, H., & Nian, W. (2004). The Chinese stock exchange market: operations and efficiency. Applied Financial Economics, 14(11), 785-797.
Sharma, M., & Sharma, P. (2009). Prediction of Stock Returns for Growth Firms-A Fundamental Analysis. Vision, 13(3), 31-40.
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.
Shen, C. H., & Lin, K. L. (2010). The impact of corporate governance on the relationship between fundamental information analysis and stock returns. Emerging Markets Finance and Trade, 46(5), 90-105.
Shen, K. Y., & Tzeng, G.-H. (2015). Combined soft computing model for value stock selection based on fundamental analysis. Applied Soft Computing, 37, 142-155.
Smales, L. A. (2017). The importance of fear: investor sentiment and stock market returns. Applied Economics, 49(34), 3395-3421.
Su, R., Zhao, Y., Yi, R., & Dutta, A. (2012). Persistence in mutual fund returns: Evidence from China. International Journal of Business and Social Science, 3(13),88-94.
Tang, K., Wang, W., & Xu, R. (2012). Size and performance of Chinese mutual funds: The role of economy of scale and liquidity. Pacific-Basin Finance Journal, 20(2), 228-246.
Tarnaud, A. C., & Leleu, H. (2018). Portfolio analysis with DEA: Prior to choosing a model. Omega, 75, 57-76.
Thomsett, M. C. (1998). Mastering fundamental analysis: Dearborn Trade Publishing.
Tone, K., Kweh, Q. L., Lu, W. M., & Ting, I. W. K. (2019). Modeling investments in the dynamic network performance of insurance companies. Omega, 88, 237-247.
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131.
Van der Hart, J., Slagter, E., & Van Dijk, D. (2003). Stock selection strategies in emerging markets. Journal of Empirical Finance, 10(1-2), 105-132.
Wei, Y., Qin, S., Li, X., Zhu, S., & Wei, G. (2019). Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis. Finance Research Letters, 30, 23-29.
Wei, Y., Yu, Q., Liu, J., & Cao, Y. (2018). Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model. Physica A: Statistical Mechanics and its Applications, 492, 923-930.
Welch, I., & Goyal, A. (2007). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies, 21(4), 1455-1508.
Wu, F. (2018). Sectoral contributions to systemic risk in the Chinese stock market. Finance Research Letters.
Wu, Y. (2011). Momentum trading, mean reversal and overreaction in Chinese stock market. Review of Quantitative Finance and Accounting, 37(3), 301-323.
Wuhuan, D., & Yu, D. (2014). Research on the performance persistence of China's funds. Canadian Social Science, 10(6), 29.
Xie, H., Bian, J., Wang, M., & Qiao, H. (2014). Is technical analysis informative in UK stock market? Evidence from decomposition-based vector autoregressive (DVAR) model. Journal of Systems Science and Complexity, 27(1), 144-156.
Xie, H., & Wang, S. (2013). A new approach to model financial markets. Journal of Systems Science and Complexity, 26(3), 432-440.
Xiong, X., Bian, Y., & Shen, D. (2018). The time-varying correlation between policy uncertainty and stock returns: Evidence from China. Physica A: Statistical Mechanics and its Applications, 499, 413-419.
Yan, X., & Zheng, L. (2017). Fundamental analysis and the cross-section of stock returns: A data-mining approach. The Review of Financial Studies, 30(4), 1382-1423.
Yang, F., Chen, Z., Li, J., & Tang, L. (2019). A novel hybrid stock selection method with stock prediction. Applied Soft Computing, 80, 820-831.
Yang, J., Xin, Y., & Jun, X. (2019). Managerial characteristics and stock market investment: evidence from China. Accounting & Finance, 59(S2), 2017-2044.
Yao, S., He, H., Chen, S., & Ou, J. (2018). Financial liberalization and cross-border market integration: Evidence from China's stock market. International Review of Economics & Finance, 58, 220-245.
Yen, G., & Lee, C.-f. (2008). Efficient market hypothesis (EMH): past, present and future. Review of Pacific Basin Financial Markets and Policies, 11(02), 305-329.
Zhang, Q., Koutmos, D., Chen, K., & Zhu, J. (2019). Using Operational and Stock Analytics to Measure Airline Performance: A Network DEA Approach. Decision Sciences, 277(3),1010-1026.
Zhou, L., Si, Y. W., & Fujita, H. (2017). Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method. Knowledge-Based Systems, 128, 93-101.
Zhou, X. W., Tan, Z.-P., & Huang, M.-H. (2018). Study of liquidity commonality in China's stock market, using an ARFIMA-IGARCH-COPULA model. Journal of Interdisciplinary Mathematics, 21(5), 1351-1356.
Zhou, Z., Xiao, H., Jin, Q., & Liu, W. (2018). DEA frontier improvement and portfolio rebalancing: An application of China mutual funds on considering sustainability information disclosure. European Journal of Operational Research, 269(1), 111-131.
Zou, L., Tang, T., & Li, X. (2016). The stock preferences of domestic versus foreign investors: Evidence from Qualified Foreign Institutional Investors (QFIIs) in China. Journal of Multinational Financial Management, 37, 12-28.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top