參考文獻
一、中文部分
葉怡成(2003),類神經網路模式應用與實作,台北市:儒林圖書有限公司。
財團法人中華民國會計研究發展基金會審計準則委員會(2006),審計準則公報及審計實務指引合訂本,台北:著者發行。
廖述賢、溫志皓(2012),資料探勘理論與應用:以IBM SPSS Modeler為範例,新北市:碩博文化股份有限公司,1-2。
郭瓊宜(1994),類神經網路在財務危機預警模式之應用,淡江大學管理科學研究所未出版碩士論文。蔡璧徽、李正福(2011) ,會計師意見在財務危機預測之應用與分析,臺大管理論叢;22卷第1期期,327-356。
盧鈺欣、林昱成與林育伶(2016),資料探勘技術在繼續經營疑慮意見診斷模型之應用,會計評論;63期,77-108。
羅玉惠(2007),整合財務比率與公司治理指標建構信用平等預測模型-區別分析與類神經網路之應用,國立台北大學企業管理學系碩士論文。 二、英文部分
Anandarajan, M., and A. Anandarajan, (1999), A comparison of machine learning techniques with a qualitative response model for auditor’s going concern reporting, Expert Systems with Applications 16, 385-392.
Beaver, W. H., (1966), Financial Ratios as Predictors of Failure, Journal of Accounting Research 4, 71-111.
Chen, S. (2019). An effective going concern prediction model for the sustainability of enterprises and capital market development, Applied Economics, 51(31), 3376-3388.
Coats, P.K., and L.F.Fant., (1993), A Neural Network Approach to Forecasting Financial Distress, Journal of Business Forecasting 10, 9-12.
Hansen, J. V., J. B. McDonald, and J. D. Stice, (1992), Artificial intelligence and generalized qualitative-response models: an empirical test on two audit decision-making domains, Decision Sciences 23(3), 708-723.
Krirkos, E., Spathis, C., Nanopoulos, A., and Manolopoulos, Y., (2007), Identifying qualified auditors' opinions: a data mining approach, Journal of Emerging Technologies in Accounting 4(1), 183-197.
Lenard, M. J., Alam, P., and Madey, G. R. (1995). The application of neural networks and a qualitative response model to the auditor’s going concern uncertainty decision. Decision Sciences, 26(2), 209-227.
Levitan, A. S., and J. A. Knoblett, (1985), Indicators of exceptions to the going-concern assumption, Auditing: A Journal of Practice and Theory 5(1), 26-39.
Mahdi Salehi, and Fezeh Zahedi Fard, (2013), Data mining approach to prediction of going concern using classification and regression tree (CART), Global Journal of Management and Business Research 13(3), 24-30.
Martens, D., L. Bruynseels, B. Baesens, M. Willekens, and J. Vanthienen, (2008), Predicting going concern opinion with data mining, Decision Support Systems 45(4), 765-777.
Mutchler, J.F., (1985), A Multivariate Analysis of the Auditor's Going-Concern Opinion Decision, Journal of Accounting Research 23(2), 668-682.
Quinlan, J.R. (1986), Introduction of Decision Trees, Machine Learning 1(1): 81-106.