(3.239.33.139) 您好!臺灣時間:2021/03/03 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:薛仁和
研究生(外文):XUE, REN-HE
論文名稱:真空致冷系統性能之研究
論文名稱(外文):Investigation on the Performance of Vacuum Cooling System
指導教授:江沅晉江沅晉引用關係
指導教授(外文):Chiang, Yuan-Ching
口試委員:陳希立張鴻明江沅晉
口試委員(外文):Chen, Sih-LiJang, Hong-MingChiang, Yuan-Ching
口試日期:2020-07-01
學位類別:碩士
校院名稱:中國文化大學
系所名稱:機械工程學系數位機電碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:114
中文關鍵詞:空調系統真空性能係數
外文關鍵詞:Air conditioning systemVacuumCoefficient of performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今各國環保意識提升,而中央空調使用之冷媒容易跟大氣臭氧結合,使臭氧層漸薄,且利用冷媒吸收水之熱量,形成冰水提供,冷媒吸收之熱量再藉由冷卻水傳至冷卻水塔排放至大氣,加劇全球暖化,且壓縮機之高消耗功率也與現今能源議題相違背。
本研究利用水在負壓下沸點會降低之原理,使水在常溫下進行蒸發吸熱達到致冷之效果,而帶有熱量之蒸發水氣將其用水冷凝,形成熱水使用端。
研究目的為建立一真空致冷系統,利用水當冷媒,包含之閃蒸槽與冷凝槽、油式真空泵及真空助力泵,經過變頻器調整輸出功率,並記錄閃蒸槽及冷凝槽之溫度,計算致冷能力與製熱能力,找到此系統最佳操作點。
此系統經實驗得知,可將水由26℃降至18℃,也可將水由25℃升至35℃,而系統性能係數落在2.0~2.3左右,且此系統也有包含熱損失及其他外在因素計算,使研究成果更完整。

Nowadays, environmental protection awareness of various countries is increasing, and the refrigerant used in the central air conditioner is easy to combine with atmospheric ozone, making the ozone layer thinner, and using the refrigerant to absorb the heat of water to form ice water. The heat absorbed by the refrigerant is then transferred to the cooling tower through the cooling water for discharge to the atmosphere, global warming is exacerbated, and the high power consumption of compressors is also contrary to current energy issues.
This study uses the principle that the boiling point of water will decrease under negative pressure, so that water evaporates and absorbs heat at room temperature to achieve the effect of cooling, and the evaporated water vapor with heat condenses the water to form the hot water use end.
The purpose of the research is to establish a vacuum refrigeration system, using water as the refrigerant, the included flash tank and condensation tank, oil vacuum pump and vacuum booster pump, adjust the output power through the frequency converter, and record the temperature of the flash tank and condensation tank, Calculate the cooling capacity and heating capacity to find the best operating point of this system.
This system has been experimentally known to reduce water from 26°C to 18°C, or to increase water from 25°C to 35°C, and the system performance coefficient falls around 2.0 to 2.3, and this system also includes heat loss and other The calculation of external factors makes the research results more complete.

摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 XII
符號說明 XIII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-2-1水冷空調系統 2
1-2-2氣冷與真空致冷比較 3
1-2-3真空致冷技術及應用 4
1-2-4真空製冰技術及應用 6
1-2-5冷媒與水(R718)比較 7
1-2-6廢熱回收 8
1-3研究動機與目的 9
1-4研究方法 10
1-5論文架構 12
第二章 真空致冷系統數學模型建立 13
2-1致冷端數學模型建立 13
2-2製熱端數學模型建立 14
2-3板式熱交換器數學模型建立 15
2-3-1致冷端板式熱交換器 15
2-3-2冷凝端板式熱交換器 15
2-4系統熱損失數學模型建立 16
2-4-1致冷端熱損失計算 16
2-4-2製熱端熱損失計算 16
2-5系統質量守恆 17
2-6系統能量守恆 17
2-6-1系統致冷端之能量守恆 17
2-6-2系統製熱端之能量守恆 17
2-6-3系統致冷量、製熱量與輸出功率之能量守恆 18
2-7系統性能係數數學模型建立 18
第三章 真空致冷實驗系統設計 19
3-1真空致冷循環系統設計與架設 19
3-1-1閃蒸槽元件設計與架設 19
3-1-2冷凝槽元件設計與架設 20
3-1-3板式熱交換器與恆溫水槽架設 20
3-1-4附屬設備架設 21
3-2系統量測系統及感測器架設 22
3-3實驗量測系統與流程設計 23
3-4實驗系統操作模式設計 24
第四章 真空致冷系統實驗結果與分析 37
4-1真空系統實驗結果分析-2公升水量實驗 37
4-1-1系統致冷側結果分析 37
4-1-2系統製熱側結果分析 38
4-1-3各功率下致冷量及製熱量計算 39
4-2真空系統實驗結果分析-3公升 63
4-2-1系統致冷側結果分析 63
4-2-2系統製熱側結果分析 64
4-2-3各功率下致冷量及製熱量計算 65
4-3系統水量差異之交叉比對 89
4-4系統外在因素影響 91
4-5系統質量守恆 93
4-6系統能量守恆 96
4-6-1 實驗致冷側能量守恆-2公升 96
4-6-2 實驗致冷側能量守恆-3公升 99
4-6-3全系統能量守恆 101
4-7系統性能係數 105
4-8飽和溫度及壓力 107
第五章 結論與建議 109
5-1結論 109
5-2建議 111
參考文獻 112

[1]Drew SCHMIDT,Jake SINGLETON,and Craig R. BRADSHAW,Development of a Light-Commercial Compressor Load Stand to Measure Compressor Performance using Low-GWP Refrigerants,International Journal of Refrigeration, Vol,100,pp.443-453,2019.
[2]李家龍,中央空調系統變頻設計應用與全尺度實驗驗證,國立勤益科技大學,2013。
[3]謝易展,冷卻水塔性能評估之研究,國立臺北科技大學,2019
[4]H.-P. Cheng,Vacuum cooling combined with hydrocooling and vacuum drying on bamboo shoots,Applied Thermal Engineering,Vol.26,pp.2168-2175,2006.
[5]Karl McDonald,Da-Wen Sun,Vacuum cooling technology for the food processing industry: a review,Journal of Food Engineering,Vol.45,pp.55-65,2000.
[6]T.J.Rennie,G.S.V.Raghavan,C.Vigneault,Y.Gariepy and Gariepy,Vacuum cooling of lettuce with various rates of pressure reduction,American Society of Agricultural Engineers,Vol.44,pp.89-93,2001.
[7]Hande Mutlu Ozturk,Harun Kemal Ozturk and Gunnur Kocar,Comparison of Vacuum Cooling with Conventional Cooling for Purslane,International,Journal of Food Engineering,Vol.7,2011.
[8]Lijun Wang and Da-Wen Sun,cooling of porous and moisture foods by using vacuum cooling technology,Trends in Food Science & Tschnology,Vol.12,pp.174-184,2001.
[9]W.L Cheng, Y.H. Peng, H. Chen, L. Hu,and H.P. Hu,Experimental investigation on the heat transfer characteristics of vacuum spray flash evaporation cooling,International Journal of Heat and Mass Transfer,Vol.102,pp233-240,2016.
[10]WANG,Chao, et al,Study on water droplet flash evaporation in vacuum spray cooling,International Journal of Heat and Mass Transfer,Vol.112,pp.279-288,2017.
[11]A.Marcos,L.C.Chow,and J.H.Du,et al,Spray cooling at low system pressure,Eighteenth Annual IEEE Symposium Semiconductor Thermal Measurementand Management,pp.169-175,2002.
[12]KIM, B. S., et al,Study on ice slurry production by water spray,International Journal of Refrigeration,Vol.24,pp.176-184,2001.
[13]X. Zhang,Z. Han,and Z. Li.,Analysis on IPF influencing factors for vacuum binary ice making method,International Journal of Thermal Sciences,Vol.67,pp.210-216,2013.
[14]R. Lugo,L. Fournaison,and J.Guilpart,Ice–liquid–vapour equilibria of ammonia and ethanol aqueous solutions applied to the production of ice-slurries Prediction and experimental results,Chemical Engineering and Processing,Vol.45,pp.66-72,2006.
[15]Šarevski,M.N.,Šarevski,V.N.,Characteristics of R718 refrigeration/heat pump systems with two-phase ejectors,International Journal of Refrigeration,Vol.70,pp.13-32,2006.
[16]W. Wu,H.M.Skye.,Progress in ground-source heat pumps using natural refrigerants,International Journal of Refrigeration,Vol.92,pp.70-85,2018.
[17]李伯毅,間接有機朗肯循環對於化工程序廢熱回收之應用,國立臺灣大學,2016。
[18]陳育賢,有機朗肯循環應用在船舶節能之數值分析,國立高雄海洋科技大學,2014。
[19]李良梧,空氣調節與空氣汙染工程學(下),臺灣臺北,全華科技圖書股份有限公司,13-5至13-13,2000。
[20]T. Asaoka, A. Saito, S. Okawa,and T. Ito, N. Izumi.,Vacuum freezing type ice slurry production using ethanol solution 1st report: Measurement of vapor–liquid equilibrium data of ethanol solution at 20℃ and at the freezing temperature,International Journal of Refrigeration,Vol.32,pp.387-393,2009.
[21]T. Asaoka, A. Saito, S. Okawa, H. Kumanob, T. Hozumia., Vacuum freezing type ice slurry production using ethanol solution 2nd report: Investigation on evaporation characteristics of ice slurry in ice production. International Journal of Refrigeration,Vol.32,pp.394-40,2009.

電子全文 電子全文(網際網路公開日期:20250720)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔