跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何詩涵
研究生(外文):HO, SHIH-HAN
論文名稱:以玉米澱粉作為分子模板製備多孔磁性固體超強酸催化甘油與叔丁醇間醚化反應之應用
論文名稱(外文):Application of Corn Starch as Molecular Template in Preparing Magnetic Solid Superacid with Porous Morphology for Carrying Out the Etherification of Glycerol with Tert-Butanol
指導教授:黃堅昌
指導教授(外文):HUANG, CHIEN-CHANG
口試委員:陳俊宏詹錦豐陳明仁
口試委員(外文):CHEN, GEN-HUNGCHAN, CHIN-FENGCHEN, MING-JEN
口試日期:2020-07-21
學位類別:碩士
校院名稱:靜宜大學
系所名稱:化粧品科學系
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:醚化反應磁性分子模板多孔性固體超強酸
外文關鍵詞:etherificationmagneticmolecular templateporous solid superacid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:919
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多孔性材料由於其多孔結構和大的比表面積而被廣泛運用在催化劑或催化劑載體。固體催化劑的多孔性結構不僅可以顯著增加在反應中活性位點的密度,更可以提高固體催化劑對所需產物的選擇性。在本研究中,使用低成本的玉米澱粉代替常規使用的分子模板,例如十六烷基三甲基溴化銨(CTAB),以製備具有多孔殼構型的核-殼酸催化劑,用於生產叔丁基甘油醚。固體超強酸的鐵核使得固體超強酸易於從反應混合物中分離出來,隨後可用於下一個反應過程中。借助於在反應溶液中的澱粉,Sr陽離子可以很好的分散並附著在鐵核芯上的多孔二氧化矽骨架中。將硫酸根離子接枝到分散在固體催化劑殼層上的Sr陽離子後,形成具有超強酸特性的活性位點。通過BET、XRD、FTIR、TPD、TGA和正丁胺逆滴定法對固體催化劑的物理和化學性質進行表徵。通過甘油與叔丁醇間的醚化反應來評估固體超強酸的催化性能。
Porous materials have been widely used as a catalyst or catalyst support because of their porous configuration and large specific surface area. The porous configuration of a solid catalyst not only can significantly increase the density of the active sites in reactor, but also can improve the selectivity of the solid catalyst for the desired product. In this study, low cost corn starch was used as a replacement for the conventional molecular template, such as cetyltrimethylammonium bromide (CTAB), in preparing core-shell acid catalyst with porous shell configuration for carrying out the production of tert-butyl glyceryl ether. The ferric core of the solid superacid enable the solid superacid to be easily separated from the reaction mixture and subsequently to be apply in next reaction run. With the assistance of molecular starch in the reaction solution, Sr cations were well dispersed on porous silica framework attached on ferric core. The active sites with superacid character were formed after sulfate ions were grafted on the Sr cations dispersed on the shell of the solid catalyst. The physical and chemical properties of the solid catalyst were characterized by BET, XRD, FTIR, TPD, TGA and n-butylamine back- titration. The catalytic properties of the solid superacid was evaluated by the etherification of glycerol with tert-butanol.
中文摘要 i
Abstart ii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 甘油 3
2.1.1 生質甘油的來源 3
2.1.2 生質甘油的應用 4
2.1.3 生質甘油的乙醯化反應與酯化反應 6
2.1.4 生質甘油的脫水反應 9
2.1.5 生質甘油的縮酮與縮醛反應 10
2.1.6 生質甘油的醚化反應 12
2.2 酸性催化劑 14
2.2.1 離子交換樹脂 14
2.2.2 沸石 15
2.2.3 雜多酸 16
2.2.4 金屬氧化物 17
2.3 模板技術及其應用 17
2.3.1 硬模板(Hard-template) 18
2.3.2 軟模板(Soft-template) 19
2.3.3 澱粉模板 20
2.4 殼-核材料製備 21
第三章 材料與方法 22
3.1 實驗材料 22
3.1.1 藥品名稱 22
3.1.2 檢測儀器 23
3.1.3 其他儀器設備 24
3.2 觸媒製備 25
3.2.1 Ferrite製備 25
3.2.2 SrSi(x:y)Ferrite載體製備 25
3.2.3 SrSi(x:y)Ferrite載體表面修飾 26
3.3 觸媒物理化學性質分析 29
3.3.1 X射線繞射分析 (XRD) 29
3.3.2 比表面積分析 (BET) 29
3.3.3 傅立葉轉紅外線光譜分析 (FT-IR) 29
3.3.4 熱重分析 (TGA) 30
3.3.5 熱程控脫附(TPD) 30
3.4 觸媒反應性測試 31
3.4.1 酯化反應 31
3.4.2 酯化反應產物組成分析 31
3.4.3 醚化反應 32
3.4.4 醚化反應產物組成分析 32
第四章 結果與討論 34
4.1 觸媒物理化學性質分析 34
4.1.1 觸媒的晶型結構 34
4.1.2 觸媒表面官能基分析 39
4.1.3 觸媒熱重分析 43
4.1.4 觸媒比表面積 47
4.1.5 觸媒酸性特性 51
4.2 觸媒活性測試 56
4.2.1 酯化反應 56
4.2.2 醚化反應 58
第五章 結論與未來展望 74
5.1 結論 74
5.2 未來展望 74
參考文獻 76
Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A., Umar, R., Juahir, H., Khatoon, H., Endut, A., A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production, Renewable and Sustainable Energy Reviews 70 (2017) 1040–1051
Anitha, M., Kamarudin, S.K., Kofli, N.T., The potential of glycerol as a value-added commodity, Chemical Engineering Journal 295 (2016) 119-130
Alexandratos, S.D., Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research, Industrial and Engineering Chemistry Research 48 (2009) 388–398
Al-Eid, M., Ding, L., Saleem, Q., Badairy, H., Sitepu, H., Al-Malki, A., A facile method to synthesize hierarchical nano-sized zeolite beta, Microporous and Mesoporous Materials 279 (2019) 99-106
Ahmad, M.I., Javaid Zaidi, S.M., Ahmed, S., Proton conducting composites of heteropolyacids loaded onto MCM-41, Journal of Power Sources 157 (2006) 35-44
Brett, G.L., He, Q., Hammond, C., Miedziak, P.J., Dimitratos, N., Sankar, M., Herzing, A.A., Conte, M., Lopez-Sanchez, J.A., Kiely, C.J., Knight, D.W., Taylor, S.H. and Hutchings, G.J., Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Base-Free Conditions, Angewandte Chemie International Edition 50 (2011) 10136-10139
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker, J.L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, Journal of American Chemical Society 114 (1992) 10834-10843
Bagheri, S., Julkapli, N.M.,Yehye, W.A., Catalytic conversion of biodiesel derived raw glycerol to value added products, Renewable and Sustainable Energy Reviews 41 (2015) 113-127
Babaei, Z., Chermahini, A.N., Dinari, M., Glycerol adsorption and mechanism of dehydration to acrolein over TiO2 surface: A density functional theory study, Journal of Colloid and Interface Science, 563 (2020 ) 1-7
Banu, I., Bumbac, G., Bombos, D., Velea, S., Gălan, A.-M., Bozga, G., Glycerol acetylation with acetic acid over Purolite CT-275. Product yields and process kinetics, Renewable Energy 148 (2020) 548-557
Barbaro, P., Liguori, F., Ion Exchange Resins: Catalyst Recovery and Recycle, Chemical Reviews 109 (2009) 515–529
Bai, R., Song, Y., Li, Y., Yu, J., Creating Hierarchical Pores in Zeolite Catalysts, Trends in Chemistry 1 (2019) 601-611
Bielański, A., Lubańska, A., FTIR investigation on Wells–Dawson and Keggin type heteropolyacids: dehydration and ethanol sorption, Journal of Molecular Catalysis A: Chemical 224(2004) 179-187
Clomburg, J.M., Gonzalez, R., Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals, Trends in Biotechnology 31 (2013) 20-28
Cannilla, C., Bonura, G., Frusteri, L., Migliori, M., Giordano, G., Todaro, S., Frusteri, F., Zeolite-assisted etherification of glycerol with butanol for biodiesel oxygenated additives production, Journal of Energy Chemistry 48 (2020) 136-144
Chakrabarti, A., Sharma, M.M., Cationic ion exchange resins as catalyst, Reactive Polymers 20 (1993) 1-45
Chairam, S., Poolperm, C., Somsook, E., Starch vermicelli template-assisted synthesis of size/shape-controlled nanoparticles, Carbohydrate Polymers 75 (2009) 694-704
Chen, D., Shi, J., Shen, H., High-dispersed catalysts of core–shell structured Au@SiO2 for formaldehyde catalytic oxidation, Chemical Engineering Journal 385 (2020) , in press
Dalla Costa, B.O., Decolatti, H.P., Legnoverde, M.S., Querini, C.A., Influence of acidic properties of different solid acid catalysts for glycerol acetylation, Catalysis Today 289 (2017) 222–230
Dosuna-Rodríguez, I., Gaigneaux E.M., Glycerol acetylation catalysed by ion exchange resins, Catalysis Today 195 (2012) 14-21
Doyle, A.M., Albayati, T.M., Abbas, A.S., Alismaeel, Z.T., Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin, Renewable Energy 97 (2016)19-23
Erdem, B., Cebe, M., Kinetics of esterification of propionic acid with n-amyl alcohol in the presenceof cation exchange resins, Korean Journal of Chemical Engineering 23 (2006) 896–901
Feliczak-Guzik, A., Hierarchical zeolites: Synthesis and catalytic properties, Microporous and Mesoporous Materials 259 (2018) 33-48
Gao, Y., Liu, Z., Hu, G., Gao, R., Zhao, J., Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel, Microporous and Mesoporous Materials 291 (2020) , in press
Gregorová, E., Pabst, W., Bohačenko, I., Characterization of different starch types for their application in ceramic processing, Journal of the European Ceramic Society 26 (2006) 1301-1309
Gonçalves, M., Mantovani, M., Carvalho, W.A., Rodrigues, R., Mandelli D., Albero, JS., Biodiesel wastes: An abundant and promising source for the preparation, Chemical Engineering Journal 15 (2014) 468-474
Huang, C.-C., Yang, C.-J., Gao, P.-J., Wang, N.-C., Chen, C.-L. and Chang, J.-S., Characterization of an alkaline earth metal-doped solid superacid and its activity for the esterification of oleic acid with methanol, Green chemistry 17 (2015) 3609-3636
Helen, M., Viswanathan, B., Srinivasa Murthy, S., Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol, Journal of Power Sources 163 (2006) 433-439
Hentze, H.-P., Antonietti, M., Template synthesis of porous organic polymers, Current Opinion in Solid State and Materials Science 5 (2001) 343-353
Izquierdo, J.F., Montiel, M., Palés, I., Outón, P.R., Galán, M., Jutglar, L., Villarrubia, M., Izquierdo, M., Hermo, M.P., Ariz, X., Fuel additives from glycerol etherification with light olefins: State of the art, Renewable and Sustainable Energy Reviews 16 (2012) 6717-6724
Jiu, J., Kurumada, K.-i., Tanigaki, M., Preparation of nanoporous silica using copolymer template, Materials Chemistry and Physics 78 (2003) 177–183
Jia, X., Khan, W., Wu, Z., Choi, J., Yip, A.C.K., Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies, Advanced Powder Technology 30 (2019) 467-484
Janssen, A.H., Schmidt, I., Jacobsen, C.J.H., Koster, A.J., de Jong, K.P., Exploratory study of mesopore templating with carbon during zeolite synthesis, Microporous and Mesoporous Materials 65 (2003) 59-75
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. & Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712
Kaplin, I.Y., Lokteva, E.S., Golubina, E.V., Shishova, V.V., Maslakov, K.I., Fionov, A.V., Isaikina, O.Y., Lunin, V.V., Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation, Applied Surface Science 485 (2019) 432-440
Kong, P.S., Cognet, P., Pérès, Y., Esvan, J., Daud, W.M.A.W. and Aroua, M.K., Development of a Novel Hydrophobic ZrO2−SiO2 Based Acid Catalyst for Catalytic Esterification of Glycerol with Oleic Acid, Industrial & Engineering Chemistry Research 57 (2018) 9386-9399
Kong, P.S., Pérès, Y., Daud, W.M.A.W., Cognet, P. and Aroua, M.K., Esterification of Glycerol With Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity, Frontiers in Chemistry 7 (2019) 1-11
Li, Y., Han, X., Hou, Y., Guo, Y., Liu, Y., Cui, Y., Huang, Z., In situ preparation of mesoporous iron titanium catalysts by a CTAB-assisted process for NO reduction with NH3, Applied Catalysis A: General 559 (2018) 146-152
Li, J., Yang, Z., Hu, G., Zhao, J., Heteropolyacid supported MOF fibers for oxidative desulfurization of fuel, Chemical Engineering Journal 388 (2020) , in press
Luo, X., Ge, X., Cui, S., Li, Y., Value-added processing of crude glycerol into chemicals and polymers, Bioresource Technology 215 (2016) 144-154
Lemos, C.O.T., Rade, L.L., Barrozo, M.A.d.S., Cardozo-Filho, L., Hori, C.E., Study of glycerol etherification with ethanol in fixed bed reactor under high pressure, Fuel Processing Technology 178 (2018) 1-6
Li, S.-W., Gao, R.-M., Zhao, J.-S., Different supports of modified heteropolyacid for ultra-deep oxidative desulfurization: A newly easy shaped catalyst and the DFT cluster model study, Fuel 237 (2019) 840-850
Lee, S.-K., Jo, C., Kim, J., Ryoo, R., Soft-to-hard consecutive templating one-pot route from metal nitrate/phenol resin/surfactant to mesoporous metal oxides with enhanced thermal stability, Microporous and Mesoporous Materials 293 (2020) , in press
Magar, S., Kamble, S., Mohanraj, G.T., Jana, S.K. and Rode, C., Solid-Acid-Catalyzed Etherification of Glycerol to Potential Fuel Additives, Energy Fuels 31 (2017) 12272-12277
Miranda, C., Urresta, J., Cruchade, H., Tran, A., Benghalem, M., Astafan, A., Gaudin, P., Daou, T.J., Ramírez, A., Pouilloux, Y., Sachse, A., Pinard, L., Exploring the impact of zeolite porous voids in liquid phase reactions: The case of glycerol etherification by tert-butyl alcohol, Journal of Catalysis 365(2018) 249-260
Miranda, C., Ramírez, A., Sachse, A., Pouilloux, Y., Urresta J., Pinar, L., Sulfonated graphenes: Efficient solid acid catalyst for the glycerol valorization, Applied Catalysis A: General 580 (2019) 167-177
Manjunathan, P., Kumar, M., Churipard, S.R., Sivasankaran, S., Shanbhaga, G.V., and Maradur, S.P., Catalytic etherification of glycerol to tert-butyl glycerol ethers using tert-butanol over sulfonic acid functionalized mesoporous polymer, The Royal Society of Chemistry 6 (2016) 82654-82660
Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.-A., Xu, C.C., Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive, Fuel 117 (2014) 450-477
Neves, T.M., Fernades, J.Q., Lião, L.M., Silva, E.D., Rosa, C.A. d.,Mortola, V.B., Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method, Microporous and Mesoporous Materials 275 (2019) 244-252
Nardin, T., Gouze, B., Cambedouzou, J., Diat, O., Soft templated mesoporous SiC from polycarbosilane grafted onto triblock copolymers, Materials Letters 185 (2016) 424-427
Okoye, P.U., Hameed, B.H., Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production, Renewable and Sustainable Energy Reviews 53 (2016) 558-574
Okoye, P.U., Abdullah, A.Z., Hameed, B.H., Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst, Fuel 209 (2017) 583-544
Quispe, C.A.G., Coronado, C.J.R., Jr, J.A.C., Glycerol: Production, consumption, prices, characterization and newtrends in combustion, Renewable and Sustainable Energy Reviews 27 (2013) 475-493
Quaschning, V., Deutsch, J., Druska, P., Niclas, H.-J., Kemnitz, E., Properties of modified zirconia used as friedel-crafts-acylation catalysts, Journal of Catalysis 177 (1998) 167-174
Razali, N., Abdullah, A.Z., Production of lactic acid from glycerol via chemical conversion using solid catalyst: A review, Applied Catalysis A, General 543 (2017) 234-246
Reinoso, D.M., Tonetto, G.M. Bioadditives synthesis from selective glycerol esterification over acidic ion exchange resin as catalyst, Journal of Environmental Chemical Engineering 6 (2018) 3399-3407
Rane, S.A., Pudi, S.M. and Biswas, P., Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study, Chemical and Biochemical Engineering Quarterly 30 (2016) 33-45
Royon, D., Locatelli, S., Gonzo, E.E., Ketalization of glycerol to solketal in supercritical acetone, The Journal of Supercritical Fluids 58 (2011) 88-92
Schwengber, C.A., Alves, H.J., Schaffner, R.A., Silva, F.A., Sequinel, R., Bach, V.R., Ferracin, R.J., Overview of glycerol reforming for hydrogen production, Renewable and Sustainable Energy Reviews 58 (2016) 259-266
Ren, S., Gong, C., Zeng, P., Guo, Q., Shen, B., Synthesis of flammulina-like mordenite using starch as template and high catalytic performance in crack of wax oil, Fuel 166 (2016) 347-351
Silva, M.J.D., Julio, A.A., Ferreira, S.O., Silva, R.C.D., Chaves, D.M., Tin(II) phosphotungstate heteropoly salt: An efficient solid catalyst to synthesize bioadditives ethers from glycerol, Fuel 254 (2019) , in press
Shen, L., Yin, H., Wang, A., Feng, Y., Shen, Y., Wu, Z., Jiang, T., Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids, Chemical Engineering Journal 180 (2012) 277-283
Silva, M.J.d., Rodrigues, F.d.Á., Júlio, A.A., SnF2-catalyzed glycerol ketalization: A friendly environmentally process to synthesize solketal at room temperature over on solid and reusable Lewis acid, Chemical Engineering Journal 307 (2017) 825-835
Srinivas, M., Raveendra, G., Parameswaram, G., Sai Prasad, P.S., Lingaiah, N., Cesium exchanged tungstophosphoric acid supported on tin oxide: An efficient solid acid catalyst for etherification of glycerol with tert-butanol to synthesize biofuel additives, Journal of Molecular Catalysis A: Chemical 413 (2016) 7-14
Simone, N., Carvalho, W.A., Mandelli, D., Ryoo, R., Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert-butyl alcohol, Journal of Molecular Catalysis A: Chemical 422 (2016) 115-121
Song, I.K., Barteau, M.A., Redox properties of Keggin-type heteropolyacid (HPA) catalysts: effect of counter-cation, heteroatom, and polyatom substitution, Journal of Molecular Catalysis A: Chemical 212 (2004) 229-236
Su, J., Fang, C., Yang, M., Cheng, Y., Wang, Z., Huang, Z., You, C., A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method, Journal of Materials Science & Technology 38 (2020) 183-188
Tang, T., Wang, Y., Dong, W., Liu, C., Xu, C., Reusable and active Pt@Co-NC catalysts for oxidation of glycerol, Renewable Energy 153 (2020) 472-479
Trofoi, A.R., Agachi, P.S., Pap, T., Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols, Renewable and Sustainable Energy Reviews 62 (2016) 804-814
Tarlani, A., Abedini, M., Nemati, A., Khabaz, M., Amini, M.M., Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica, Journal of Colloid and Interface Science 303 (2006) 32-38
Tai, Z., Isaacs, M.A., Durndell, L.I., Parlett, C.M.A., Wilson, K., Magnetically-separable Fe3O4@SiO2@SO4-ZrO2 core-shell nanoparticle catalysts for propanoic acid esterification, Molecular Catalysis 449 (2018) 137-141
Thekkathu, R., Ashok, D., Ramkollath, P.K., Neelakandapillai, S., Kurishunkal, L.P., PriyankaYadav, M.S., Kalarikkal, N., Magnetically recoverable Ir/IrO2@Fe3O4 core/ SiO2 shell catalyst for the reduction of organic pollutants in water, Chemical Physics Letters 742 (2020) , in press
Varrone, C., Liberatore, R., Crescenzi, T., Izzo, G., Wang, A., The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen, Applied Energy 105 (2013) 349-357
Wang, Z., Wang, L., Jiang, Y., Hunger, M. and Huang, J., Cooperativity of Brønsted and Lewis Acid Sites on Zeolite for Glycerol Dehydration, ACS Catalysis 4 (2014) 1144-1147
Wang, Z., Du, W., Dai, L., Liu, D., Study on Lipozyme TL IM-catalyzed esterification of oleic acid and glycerol for 1,3-diolein preparation., Journal of Molecular Catalysis B: Enzymatic 127 (2016) 11-17
Weitkamp, J., Zeolites and catalysis, Solid State Ionics 131 (2000) 175-188
Wongmanee, K., Khuanamkam, S., Chairam, S., Gold nanoparticles stabilized by starch polymer and their use as catalyst in homocoupling of phenylboronic acid, Journal of King Saud University – Science 29 (2017) 547-552
Veiga P. M., Gomes A. C. L., Veloso C. O., Henriques C. A., Etherification of different glycols with ethanol or 1-octanol catalyzed by acid zeolites, Molecular Catalysis 458 (2018) 261–271
Védrine J. C., Importance, features and uses of metal oxide catalysts in heterogeneous catalysis, Chinese Journal of Catalysis 40 (2019) 1627–1636
Xiao P.-W., Zhao L., Sui Z.-Y., Xu M.-Y., Han B.-H., Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method, Microporous and Mesoporous Materials 253 (2017) 215-222
Yang Y., Lv G., Guo W., Zhang Li., Synthesis of mesoporous silica-included heteropolyacids materials and the utilization for the alkylation of phenol with cyclohexene, Microporous and Mesoporous Materials 261 (2018) 214-219
Zhou J., Hu J., Zhang X., Li J., Jiang K., Liu Y., Zhao G., Wang X., Chu H., Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction, Journal of Catalysis 381 (2020) 434-442
Zhu S., Gao X., Dong F., Zhu Y., Zheng H., Li Y., Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid, Journal of Catalysis 306 (2013) 155–163
Zhou, L., Al-Zaini, E., Adesina, A.A., Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts, Fuel 103 (2013) 617–625
Zhou, C.H., Li, G.L., Zhuang, X.Y., Wang, P.P., Tong, D.S., Yang, H.M., Lin, C.X., Li, L., Zhang, H., Ji, S.F., Yu, W.H., Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein, Molecular Catalysis 434 (2017) 219-231
Zhao, W., Yi, C., Yang, B., Hu, J., Huang, X., Etherification of glycerol and isobutylene catalyzed over rare earth modified Hβ-zeolite, Fuel Processing Technology 112 (2013) 70-75
Zhang, Y., Lu, L., Zhang, Z., Shu, Z., Dai, K., Liu, J., Chen, Y., Jin, H., Hou, S., Natural nanomaterial as hard template for scalable synthesizing holey carbon naonsheet/nanotube with in-plane and out-of-plane pores for electrochemical energy storage, Chinese Chemical Letters 29 (2018) 641-644
Zhu, S., Zhao, N., Li, J., Deng, X., Sha, J., He, C., Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications, Nano Today 29 (2019), in press

電子全文 電子全文(網際網路公開日期:20250803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top