(3.238.186.43) 您好!臺灣時間:2021/02/28 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林穎昇
研究生(外文):LIN, YING-SHEN
論文名稱:植物乳酸菌之米水解產物乳化性質
論文名稱(外文):Emulsifying Properties of The Rice Hydrolysate by Plant Lactobacillus
指導教授:陳香惠黃克峯黃克峯引用關係
指導教授(外文):CHEN, SHIA-HUYHUANG, KEN-FENG
口試委員:官常慶邱文慧張乃方吳姵萱
口試委員(外文):KWAN, CHANG-CHINCHIU, WEN-HUICHIANG, NAI-FANGWU, PEY-SHIUAN
口試日期:2020-07-21
學位類別:博士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:157
中文關鍵詞:乳化劑油脂助乳化劑乳化安定高分子增稠劑試誤法
外文關鍵詞:emulsifierfatco-emulsifieremulsion stabilityhigh-molecular-weight thickening agenttrial and error method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新型態植物乳酸菌之米水解產物,透過日本精米經過發酵製程後改變其直鏈澱粉與支鏈澱粉兩端的分子量比例,產生兼具親水、親油的天然乳化劑特性,並研究此植物乳酸菌之米水解產物應用在化妝品配方的乳化性質,測試此天然乳化劑在架構化妝品配方的成分配伍及製程操作特性,歸納出在化妝品配方設計時的最佳條件,進而展開全新的化妝品配方設計評估方法,解決傳統研發採用試誤法設計化妝品配方效率不彰的問題,讓美妝產業的配方技術得以有系統的累積傳承,才能符合現今美妝產品生命週期短、變化快速的消費品市場。
選擇市售保養品配方設計常使用的五大類13種油脂(來源包含植物性、動物性、礦物性、合成及有機矽),對新型態天然植物乳酸菌之米水解產物為研究標的,研究在化妝品配方設計中,在固定配方架構條件下,一次探討一個變因對配方的影響:添加固定油脂與1%、2%、3%不同比例植物乳酸菌之米水解產物配伍,添加固定2%比例天然植物乳酸菌之米水解產物對13種不同油脂、高油量比例及混合油脂添加的乳化特性研究。添加固定2%天然植物乳酸菌之米水解產物搭配0%、1.5%、2%比例不同種類的高級脂肪醇助乳化劑,及使用不同種類、比例膠體配製下進行乳化特性研究,再依據上述結果歸納出天然植物乳酸菌之米水解產物對油脂、助乳化劑、膠體配方架構的最佳配伍條件。操作製程部分則採用三種不同的條件評估其影響性。最後再依此成分配伍原則及製程操作條件設計配方,觀察並驗證是否有再現性。
新型態植物乳酸菌之米水解產物之乳化性質研究結果:一、與五大類13種油脂配伍的實驗結果得知:此天然乳化劑有利於分子量小或黏度低的油脂乳化,與油脂的來源及種類無關。配方中將植物乳酸菌之米水解產物添加比例從2%提升至3%時,對於乳化安定並無明顯提升,顯示該天然植物乳酸菌之米水解產物乳化劑,並不隨著添加比例增加有較好的乳化安定性。複配其他天然乳化劑有較好的乳化安定性,說明乳化劑複配時能有較佳的乳化力。當油脂添加比例為12%時,植物乳酸菌之米水解產物:鯨蠟硬脂醇:三仙膠=2%:1.5%:0.3%最安定,超過12%高油量下乳化溫度會降低,液滴也較不穩定,顯示油脂的總量也會影響乳化力。二、選擇鯨蠟硬脂醇和山崳醇當助乳化劑實驗結果得知:鯨蠟硬脂醇可以獲得穩定的乳化力及粒徑較小的乳化液滴,山崳醇則無法乳化。鯨蠟硬脂醇的添加比例為1.5%時,表現出最佳的乳化效果,近一步將添加量提升至2.0%,乳化溫度無明顯的變化,而無添加鯨蠟硬脂醇當助乳化劑時則無法乳化,顯示出選擇鯨蠟硬脂醇當助乳化劑的必要性,添加鯨蠟硬脂醇讓油脂與植物乳酸菌發酵之米水解產物乳化劑的疏水基相容性更佳,有利於乳化力的提升。三、高分子增稠劑測試結果:添加三仙膠等天然高分子增稠劑優於丙烯酸聚合物,可提升該乳化顆粒的乳化安定性。四、製程部分設計三種不同操作條件,對於實驗結果無明顯差異,顯示製程條件並不會完全影響配方設計,但可選擇產業最適合的條件。
最後應用植物乳酸菌之米水解產物分析的乳化性質結果,設計化妝品乳化配方及市售配方,依據此天然乳化劑的成分配伍原則及製程操作條件,驗證前述研究及方法的可行性。

Catabolite from the rice by the novel plant lactobacillus was produced by changing the molecular weight at the amylose ends and the amylopectin ends of fermented Japanese polished rice. This process allows for a natural emulsifier with hydrophilic and lipophilic properties to be generated. This study investigated the emulsification property of the rice hydrolysate by plant lactobacillus when such a catabolite is applied in cosmetic product formula. Specifically, this study (1) tested the corresponding formula composition for the aforementioned natural emulsifiers in cosmetic product formula and the operational properties for the related manufacturing process, (2) deduced the optimal conditions for cosmetic product formula design, and (3) subsequently developed evaluation methods for the design of cosmetic product formula. Accordingly, the poor efficiency of present-day trial-and-error methods for designing cosmetic product formula can be improved, enabling the systematic inheritance of formula techniques for the cosmetic industry and accommodating the industry to the rapidly changing trends and short product life cycles in the contemporary cosmetic consumption market.
The rice hydrolysate by plant lactobacillus was the research target. To examine the influence of the study variables on the formula of cosmetic products, this study analyzed 13 types of fats, which belonged to five primary categories (from plant, animal, mineral, synthetic, and organic-silicone sources). In the analysis, the researchers of this study examined the influence of the study variables, under fixed formula structural conditions, on the cosmetic product formula, one variable at a time. The following were analyzed: (1) the composition combination at a fixed amount of fat for 1%, 2%, and 3% catabolites from the rice by plant lactobacillus; (2) the emulsification property of 2% the rice hydrolysate by plant lactobacillus for the 13 types of fats, at a high fat content ratio and with compound fat addition; (3) emulsification properties, which were analyzed by matching 2% catabolite from the rice by plant lactobacillus with first, higher fatty alcohol coemulsifiers of different categories and at different ratios (0%, 1.5%, and 2%) and second, colloids of different categories and at different ratios. Lastly, this study’s researchers deduced the optimal conditions for component combination involving the rice hydrolysate by plant lactobacillus in the structural formula of fats, coemulsifiers, and colloids. With specific respect to the manufacturing process, the influences of three types of conditions were evaluated. A formula was then designed based on the principles underlying component combination and based on the manufacturing operating conditions. Lastly, this formula was evaluated, including for repeatability.
The experimental results on the emulsification properties of the catabolite from the rice hydrolysate by plant lactobacillus revealed the following.
First, as indicated in the experiment on component combination with the 13 types of fats from the five primary categories, the natural emulsifier in this study benefits the emulsification of low-molecular-weight or low-viscosity fats, regardless of the source and type of fat. When the addition ratio of the rice hydrolysate by plant lactobacillus was increased from 2% to 3%, emulsion stability was not significantly improved. This indicated that when the rice hydrolysate by plant lactobacillus is used as an emulsifier, increases to the addition ratio yield no improvement to emulsion stability. Rather, emulsion stability, as well as emulsification power, can be improved by mixing this study’s emulsifier with other natural emulsifiers. At the fat addition ratio of 12%, emulsion stability is most optimal at the 2%:1.5%:0.3% ratio of the rice hydrolysate by plant lactobacillus to cetearyl alcohol to xanthan gum. Under the condition of a high, >12% fat content, the emulsification temperature is decreased, and the droplets are less stable. This indicates that total fat content also affects emulsification power.
Second, as indicated in the experiment with cetearyl alcohol and behenyl alcohol as coemulsifiers, cetearyl alcohol yields stable emulsification power and emulsified droplets of smaller particle size. Conversely, emulsification cannot be achieved when behenyl alcohol is used. Specifically, the cetearyl-alcohol addition ratio of 1.5% yielded the best emulsification effect, and no significant change was noted when the addition ratio was increased to 2.0%. Cetearyl alcohol must be added as a coemulsifier for emulsification to occur. These results indicated that cetearyl alcohol functions as a crucial coemulsifier. Specifically, the addition of cetearyl alcohol enhances the compatibility of the hydrophobic group of the emulsifier (composed of fat and the rice hydrolysate by plant lactobacillus).
Third, as indicated in the experiment results for high-molecular-weight thickening agents, natural xanthan gum performed better than acrylate polymer did because xanthan gum enhanced the emulsion stability of the emulsified particles.
Fourth, the three types of operation conditions for the manufacturing process exerted no significant influence on the experimental results. This finding indicated that manufacturing conditions do not affect the formula design. Nevertheless, some conditions may be more suitable for the industry for other reasons (e.g., cost).
In the final part of this study, the researchers applied the aforementioned experimental results, on the emulsification property of the rice hydrolysate by plant lactobacillus, to design an emulsification and commercial formula for cosmetic products. Based on the principles underlying component combination and on the manufacturing conditions of the aforementioned natural emulsifier, the feasibility of the findings and methods of this study was verified.
謝誌 I
中文摘要 II
Abstract V
目錄 X
表目錄 XIII
圖目錄 XVI
第1章 緒論 1
1-1 前言 1
1-1-2 植物乳酸菌之米水解產物介紹 2
1-2 全球化妝品產業的發展 4
1-2-1 全球化妝品的定義 4
1-2-2 化妝品產業上、中、下游的關係 7
1-2-3 近期化妝品產業市場的演變 9
1-3 化妝品範圍、種類及評價方法 11
1-3-1 化妝品配方設計方法歸納 13
1-4 原料應用可行性分析方法 15
1-4-1 化妝品業界原料專用語定義 16
1-4-2 化妝品原料評估的要求 17
1-4-3 原料特性優、缺點分析 20
1-4-4 美妝產業配方應用可行性分析 21
1-4-5 原料配伍禁忌及取代可行性分析 23
1-5 化妝品的乳化劑型 23
1-5-1 乳化定義 23
1-5-2 HLB值 25
1-5-3 乳化物的物理化學性質 27
1-5-4 化妝品配方設計概念 29
1-5-5 化妝品油脂種類 31
1-5-6 乳化劑選擇 37
1-5-7 化妝品流變助劑 40
1-6 化妝品劑型穩定的因素 42
1-6-1 光安定性 44
1-6-2 布朗運動原理 44
1-6-3 Stoke運動原理 45
1-6-4 Zata電位 46
1-6-5 流變學 48
1-6-6 奧士華熟成原理 52
1-6-7 乳化系統不穩定現象 52
1-6-8 化妝品穩定性之加速老化測試方法 54
1-6-9 劑型穩定性之檢測方法與原理 57
1-7 研究目的 59
第2章 材料與方法 61
2-1 實驗架構 61
2-2-1 試藥 62
2-2-2 儀器與器材 64
2-3 實驗方法 65
2-3-1 植物乳酸菌之米水解產物與油脂配伍性試驗 65
2-3-2 植物乳酸菌之米水解產物添加量試驗 71
2-3-3 植物乳酸菌之米水解產物與助乳化劑配伍性試驗 75
2-3-4 植物乳酸菌之米水解產物與高分子配伍性試驗 85
2-3-5 植物乳酸菌之米水解產物與其他乳化劑配伍性試驗 89
2-3-6 植物乳酸菌之米水解產物架構配方試驗 94
2-3-7 植物乳酸菌之米水解產物製作流程試驗 98
2-3-8 植物乳酸菌之米水解產物市售配方試驗 105
2-3-9 化妝品穩定性評估 106
2-4 穩定性評估流程 107
2-5 統計分析 108
第3章 結果與討論 109
3-1 植物乳酸菌之米水解產物與油脂配伍性試驗 109
3-2 植物乳酸菌之米水解產物添加量試驗 117
3-3 植物乳酸菌之米水解產物與助乳化劑試驗 120
3-4 植物乳酸菌之米水解產物與高分子配伍性試驗 130
3-5 植物乳酸菌之米水解產物與其他乳化劑配伍性試驗 132
3-6 植物乳酸菌之米水解產物配方設計方法驗證 134
3-7 植物乳酸菌之米水解產物製作流程試驗 137
3-8 植物乳酸菌之米水解產物市售配方試驗 139
第4章 結論 144
第5章 參考文獻 148
附錄 155

王駿聰. (2006). 乳化化粧品安定性系統篩選之建立. 嘉南藥理科技大學化妝品科技研究所碩士論文, 16-17.
林昆範, 柯凱仁. (1999). 現代色彩學. 初版, 臺灣臺北, 全華科技圖書, 12-21.
洪偉章, 陳榮秀. (1996). 化妝品科技概論. 初版, 台灣臺北, 高立圖書有限公司, 191-195.
洪偉章. (2001). 化妝品的有效性評估. 初版, 臺灣臺北, 高立圖書有限公司, 67-69.
陳立賢. (2007). 黏劑影響化粧品之流變. 嘉南藥理科技大學化妝品. 科技研究所碩士論文, 4-9.
莫萊(Mollet, Hans), 顧本門 (Grubenmann, Arnold)著. 楊光譯. (2004). 乳液、懸浮液、固體配合技術與應用. 初版, 中國北京, 化學工業出版社. 157-160.
黃定加, 黃玲媛, 黃玲惠. (2006). 物理化學. 初版, 臺灣臺北, 高立圖書有限公司, 53-56.
童琍琍, 馮蘭賓. (1999). 化妝品工藝學. 二版, 中國北京, 中國輕工. 業出版社, 55-60.
童琍琍, 馮蘭賓. (1999). 化妝品工藝學. 二版, 中國北京, 中國輕工業出版社, 156-167.
董銀卯, 李麗, 孟宏, 邱顯榮. (2016). 化妝品配方設計7步. 中國北京, 化學工業出版社, 2-7
趙承琛. (1990). 界面化學劑化學. 二版, 臺灣臺南, 復文書局, 11-15.
裘炳毅. (2004). 化妝品和洗滌用品的流變特性. 化學工業出版社, 1-26.
蔡季真. (2005). 油脂與乳化劑對防曬產品SPF值之影響, 靜宜大學應用化學研究所碩士論文, 21-24.
歐靜枝. (1997). 乳化溶化技術實務. 二版, 臺灣臺南復漢出版, 79-80.
歐靜枝. (1990). 乳化溶化技術實務. 一版, 臺灣臺南復漢出版, 77-80.
歐靜枝. (1990). 乳化溶化技術實務. 一版, 臺灣臺南復漢出版, 87-88.
廖明隆. (2003). 界面化學與界面活性劑. 初版, 鼎文書局, 174-175.
廖明隆. (2003). 界面化學與界面活性劑. 初版, 鼎文書局, 213-216.
賴碧玉. (2002). 乳液安定性控制因素. 元智大學化學工程學系碩士論文.
賴耿陽. (1998). 實用香料化學. 初版, 臺灣臺南, 復漢出版, 210-213.
刈米孝夫. (2003). 界面活性劑的原理與應用. 五版, 臺灣臺北, 高立. 圖書限公司, 113.
田上八朗, 杉林堅次, 能崎章輔, 宿崎幸一, 神田吉弘. (2015). 化粧品科学ガイド. 2版, フレグランスジャーナル社,22-24
田上八朗, 杉林堅次, 能崎章輔, 宿崎幸一, 神田吉弘. (2015). 化粧品科学ガイド. 2版, フレグランスジャーナル社,103-104
光井武夫. (2004). 新化妝品學. 二版, 臺灣臺北, 合記圖書出版社, 215-218.
A. Bundard., P. Hameyer., & J. Metzelaars. (1996). W/O emulsions:solvent phase separation for pH determination. International journal of cosmetic science 18, 249-259.
A C de Groot., C J van Ginkel., & J W Weijland. (1997). Statement of ingredients of cosmetics. Ned tijdschr geneeskd journal, 141(36), 1747-1748.
Antonio Trincone., & Assunta Giordano. (2006). Glycosyl Hydrolases and Glycosyltransferases in the Synthesis of Oligosaccharides. Current organic chemistry 10, 1163-1193.
B.J. Dobraszczyka., & M.P. Morgenstern. (2003). Rheology and the breadmaking process. Journal of cereal science 38, 229-245.
Dennis Laba. (1993). Rheological properties of cosmetics and toiletries. 1-33.
Griffin, W.C. (1949). Classification of surface-active agents by HLB. Journal of the society of cosmetic chemists, 311-326.
Griffin, W.C. (1954). Calculation of HLB values of non-ionic surfactants. Journal of the society of cosmetic chemists, 249-256.
Hans Mollet., & Arnold Grubenmann. (2001). Formulation technology. 59-62.
Hans Mollet., & Arnold Grubemann. (2001). Formulation technology, 60-99.
John Knowlton. (1993). Handbook of cosmetic science and technology. 439.
J.Z. Liang. (2002). Characteristics of melt shear viscosity during. extrusion of polymers. Polymer testing, 21. 307-311.
K. Klein. (1994). Formulating skin care emulsions. Cosmetics &. toiletries magazine, Vol. 109, 63-66.
Mahmood Akhtar., Juliane Stenzel., Brent S. Murray & Eric Dickinson. (2005). Factors affecting the perception of creaminess of oil-in-water emulsions. Food hydrocolloids, Vol. 19, Issue 3, 521-526.
Martin M. Rieger. (1985). Surfactants in cosmetics. 106.
Martin M. Rieger. (1991). Stability testing of macroemulsions. Cosmetics. & toiletries magazine, Vol. 106, 59-69.
Mark Chandler. (1994). Water-in-oil technology. Cosmetics & toiletries. magazine, Vol. 108, 74-80.
Michele Verschoore., & Marion Nielson. (2017). The rationale of anti-aging cosmetic ingredients. J Drugs Dermatol, 16(6 Suppl), s94-97.
Randy Schueller., & Perry Romanowski. (1994). Evaluating raw. materials and finished products. Cosmetics & toiletries magazine, Vol. 109, 37-39.
Sabeeh Mohsin., & Naveed Akhtar. (2017). Formulation and stability evaluation of bauhinia variegate extract topical emulsion. Acta poloniae pharmaceutica, Vol. 74, No.3, 945-954.
S. A. Kukushkin., & V. V. Slyozov. (1995). Crystallization of binary. melts and decay of supersaturated solid solutions at the ostwald ripening stage under non-isothermal conditions. J. Phys. Chum solids, Vol. 56, No. 9, 1259-1269.
Sharon E. Jacob., Andrew Scheman., & Maria A. McGowan. (2018). Propylene glycol, American Contact Dermatitis Society, Vol29, No.1, 3-5.
S. I. Ali & Shahida Begum. (1994). Fabric softeners and softness perception, Ergonomics, 37:5, 801-806.
Soek Sin Teh., & Siau Hui Mah. (2018). Stability evaluations of different types of vegetable oil-based emulsions. Journal of oleo science, 67, 1381-1387.
Supratim Ghosh., & John N. Coupland. (2008). Factors affecting the freeze-thaw stability of emulsions. Food Hydrocolloids, 22(1), 105-111.
T.B.J. Blijdensteina., T. van Vlieta., E. van der Linden., & G.A. van Aken. (2003). Suppression of depletion flocculation in oil-in-water emulsions:a kinetic effect of β-lactoglobulin, Food hydrocolloids, 17,661-669.
Th. F. Tadros., & Berlin. (2000). Model of the adsorption/desorption. kinetics on a grouing Ⅲ-Ⅴcompound surface. Proc. XXIst IFSCC Internationa congress, 242.
Thais Guaratini., Mirela D. Gianeti., & Patricia M.B.G.M. Campos. (2006). Stability of cosmetic formulations containing esters of Vitamin E and A: Chemical and physical aspects. International journal of pharmaceutics, 327, 12-16.
Thomas Forster. (2002). Cosmetic lipids and the skin barrier. Cosmetic. science and technology series, Volume263, 274.
V. Kameshwari., & Niraj D. Mistry. (1999). Sensory properties of. emollients. cosmetic&toiletries, 114(1), 45-51.
電子全文 電子全文(網際網路公開日期:20250813)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔