( 您好!臺灣時間:2021/03/04 09:24
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):JUAN, WEI-CHE
論文名稱(外文):A Study of the Continuous Usage Intention of Netflix Users on the UTAUT2 – Flow Experience as a Mediating Variable
指導教授(外文):WEN, FUR-HSING
外文關鍵詞:NetflixExtended Integrated Technology Acceptance ModelFlow ExperienceVideo Streaming Services
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0

Netflix is growing rapidly recently. The number of users around the world has grown exponentially in a short period of time. In 2020, Netflix has attracted the attention of 160 million people. From a marketing perspective, the key factor for users to continue using Netflix is "flow". Flow has become a very important feeling for consumers to continue using technology products. The services provided by technology products have driven consumers indulging into flow state.
Therefore, exploring what factors will drive users into the flow state in Netflix has become an important issue. This study provides a framework applied concepts of the extended unified theory of acceptance and use of technology, flow theory and perceived risk to study Netflix. After collecting 550 samples of Netflix users' experience through the websites, the study utilizes R statistical software for empirical analysis. The results show that performance expectancy, price value, habits, and flow experience all positively influence continuous use intention. Moreover, performance expectancy, social influence and hedonic motivation will enhance flow experience, which further positively indirect enhance continuous use intention. In addition, different perceived risk makes significant differences in flow experience. From the results, it is found that flow experience plays an important role of mediator. We find that low-level perceived risk users feel more strongly relationship performance expectancy and flow experience than high-level perceived risk users. Conversely, users with low-level perceived risk have a lower degree of slope between hedonic motivation and flow experience than users with high-level perceptual risk. This finding is worth further of investigating.
Explaining the research results from marketing perspective, it is found that it is necessary to enter the psychological state of consumers in order to make consumers become loyal users of Netflix. Therefore, the key point is to improve Netflix's content, social functions and user enjoyment value, which prompts consumers to flow into Netflix. Furthermore, the concern of privacy risk should be solved so that enhances the user’s continuous use intention.

第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 重要名詞釋義 6
第二章 文獻探討 7
第一節OTT影音服務與Netflix 7
第二節 延伸型整合科技接受模式相關理論 9
第三節 沉浸理論 19
第四節 知覺風險 22
第三章 研究方法 23
第一節 研究架構 23
第二節 構面間關係及假設推衍 24
第三節 變項之操作性定義與衡量問項 29
第四節 研究對象與資料蒐集 35
第五節 分析方法與工具 36
第四章 實證分析結果 38
第一節 敘述性統計分析 38
第二節 探索性因素分析 43
第三節 驗證性因素分析 52
第四節 結構方程模型的假設驗證 57
第五章 結論與建議 64
第一節 結論與討論 64
第二節 研究貢獻 69
第三節 研究限制與未來建議 71
參考文獻 73
附錄一 問卷 81
附錄二 題項聚合(item parceling) 88
附錄三 整體結構模型適配度結果 89

1.Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Action control. Springer, Berlin, Heidelberg. 11-39.
2.Ajzen, I., & Fishbein, M. (2000). Attitudes and the attitude-behavior relation: Reasoned and automatic processes. European review of social psychology, 11(1), 1-33.
3.Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. The handbook of attitudes, 173(221), 31.
4.Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110.
5.Baabdullah, A. M. (2018). Factors influencing adoption of mobile social network games (M-SNGs): the role of awareness. Information Systems Frontiers, 1-17.
6.Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
7.Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 1986.
8.Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
9.Bauer, R. A. (1960). Consumer behavior as risk taking. Chicago, IL, 384-398.
10.Bentler, P. M. & Bonett, D. G. (1980). Significance tests and goodness-of –fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606.
11.Bilgihan, A., Nusair, K., Okumus, F., & Cobanoglu, C. (2015). Applying flow theory to booking experiences: An integrated model in an online service context. Information & Management, 52(6), 668-678.
12.Brown, S. A., & Venkatesh, V. (2005). A model of adoption of technology in the household: A baseline model test and extension incorporating household life cycle. Management Information Systems Quarterly, 29(3), 11.
13.Bruner II, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of business research, 58(5), 553-558.
14.Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of retailing, 77(4), 511-535.
15.Choi, D., & Kim, J. (2004). Why people continue to play online games: In search of critical design factors to increase customer loyalty to online contents. CyberPsychology & behavior, 7(1), 11-24
16.Compeau, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information systems research, 6(2), 118-143.
17.Cox, D. F. (1967). Risk handling in consumer behavior: An intensive study of two cases. Risk taking and information handling in consumer behavior, 34-81.
18.Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco. CA, US: Jossey-Bass.
19.Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J. (1990). Flow.
20.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
21.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of applied social psychology, 22(14), 1111-1132.
22.Devellis, R. F. (1991). Scale development: Theory and applications. Newbury Park, CA: Sage.
23.Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information systems research, 17(1), 61-80.
24.Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of marketing research, 28(3), 307-319.
25.Federal Communications Commission. (2013), Annual Assessment of the Status of Competition in the Market for the Delivery of Video Programming.
26.Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
27.Flaherty, D. H. (2014). Protecting privacy in surveillance societies: The federal republic of Germany, Sweden, France, Canada, and the United States. UNC Press Books.
28.Fornell, C., Larcker, D.F. (1981), Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
29.Garone, A., Pynoo, B., Tondeur, J., Cocquyt, C., Vanslambrouck, S., Bruggeman, B., & Struyven, K. (2019). Clustering university teaching staff through UTAUT: Implications for the acceptance of a new learning management system. British Journal of Educational Technology, 50(5), 2466-2483.
30.Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2014). Multivariate data analysis. Pearson 7th Edition, NJ: Pearson Education Inc, 600-638.
31.Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis 6th Edition. Pearson Prentice Hall. New Jersey. humans: Critique and reformulation. Journal of Abnormal Psychology, 87, 49-74.
32.Harri Oinas-Kukkonen, H. (2000). Balancing the vendor and consumer requirements for electronic shopping systems. Information Technology and Management, 1(1-2), 73-84.
33.Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68.
34.Hong, S., Thong, J. Y., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision support systems, 42(3), 1819-1834.
35.Hooper, M., Moyler, A.,& Nicoll, R. (2010). Over The Top TV (OTT TV) Delivery Platforms Review. BCI.
36.Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & management, 41(7), 853-868.
37.Hsu, C. L., Yu, C. C., & Wu, C. C. (2014). Exploring the continuance intention of social networking websites: an empirical research. Information Systems and e-Business Management, 12(2), 139-163.
38.Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
39.Jackson, S. A. (1996). Toward a conceptual understanding of the flow experience in elite athletes. Research quarterly for exercise and sport, 67(1), 76-90.
40.Jung, Y., Perez-Mira, B., & Wiley-Patton, S. (2009). Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in Human Behavior, 25(1), 123-129.
41.Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
42.Kim, J., Kim, S., & Nam, C. (2016). Competitive dynamics in the Korean video platform market: Traditional pay TV platforms vs. OTT platforms. Telematics and Informatics, 33(2), 711-721.
43.Kim, S. S., Malhotra, N. K., & Narasimhan, S. (2005). Research note—two competing perspectives on automatic use: A theoretical and empirical comparison. Information systems research, 16(4), 418-432.
44.King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management, 43(6), 740-755.
45.Kishton, J. M., & Widaman, K. F. (1994). Unidimensional versus domain representative parceling of questionnaire items: An empirical example. Educational and psychological measurement, 54(3), 757-765.
46.Kleijnen, M., Wetzels, M., & De Ruyter, K. (2004). Consumer acceptance of wireless finance. Journal of financial services marketing, 8(3), 206-217.
47.Kline, R. B. (2011). Principles and practice of structural equation modeling. 3rd edition. New York, New York: The Guilford Press.
48.Korzaan, M. L. (2003). Going with the flow: Predicting online purchase intentions. Journal of Computer Information Systems, 43(4), 25-31.
49.Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information systems research, 13(2), 205-223.
50.Landis, R. S., Beal, D. J., & Tesluk, P. E. (2000). A comparison of approaches to forming composite measures in structural equation models. Organizational Research Methods, 3(2), 186-207.
51.Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation. Information & management, 42(8), 1095-1104.
52.Lee, S., & Kim, B. G. (2017). The impact of qualities of social network service on the continuance usage intention. Management Decision.
53.Lewis, C. C., Fretwell, C. E., Ryan, J., & Parham, J. B. (2013). Faculty use of established and emerging technologies in higher education: A unified theory of acceptance and use of technology perspective. International Journal of Higher Education, 2(2), 22-34.
54.Lian, J. W., & Lin, T. M. (2008). Effects of consumer characteristics on their acceptance of online shopping:Comparisons among different product types. Computers in Human Behavior, 24(1), 48-65.
55.Liao, C., Palvia, P., & Lin, H. N. (2006). The roles of habit and web site quality in e-commerce. International Journal of Information Management, 26(6), 469-483.
56.Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-228.
57.Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 705-737.
58.MacCallum, R. C., Roznowski, M., Mar, C. M., & Reith, J. V. (1994). Alternative strategies for cross-validation of covariance structure models. Multivariate behavioral research, 29(1), 1-32.
59.Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114.
60.Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.
61.Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
62.Moore, G. C., & Benbasat, I. (1996). Integrating diffusion of innovations and theory of reasoned action models to predict utilization of information technology by end-users. In Diffusion and adoption of information technology , 132-146. Springer, Boston, MA.
63.Motion Picture Association of America. (2019), 2018 Theme Report.
64.Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. Interval Research Corporation, 31(1), 1-35.
65.Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing science, 19(1), 22-42.
66.Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703.
67.Park, E., & Ohm, J. (2014). Factors influencing users’ employment of mobile map services. Telematics and Informatics, 31(2), 253-265.
68.Park, S. Y., & Park, E. J. (2013). The effects of flow on consumer satisfaction through e-impulse buying for fashion products. Fashion & Textile Research Journal, 15(4), 533-542.
69.Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of management, 12(4), 531-544.
70.Rahi, S., Mansour, M. M. O., Alghizzawi, M., & Alnaser, F. M. (2019). Integration of UTAUT model in internet banking adoption context. Journal of Research in Interactive Marketing.
71.Rahman, M. M., Lesch, M. F., Horrey, W. J., & Strawderman, L. (2017). Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accident Analysis & Prevention, 108, 361-373.
72.Raman, A., & Don, Y. (2013). Preservice teachers' acceptance of learning management software: An application of the UTAUT2 model. International Education Studies, 6(7), 157-164.
73.Rogers, E. M. (1962). Diffusion of Innovations the Free Press of Glencoe. NY, 32, 891-937.
74.Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.
75.Ryu, I., & Choi, H. R. (2008). The Effect of Social Influence on Flow, Perceived Usefulness and Intention to Use in Online Community. The Journal of information systems, 17(2), 113-135.
76.Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of consumer research, 15(3), 325-343.
77.Shin, J., Park, Y., & Lee, D. (2016). Strategic management of over-the-top services: Focusing on Korean consumer adoption behavior. Technological Forecasting and Social Change, 112, 329-337.
78.Singer, E., Mathiowetz, N. A., & Couper, M. P. (1993). The impact of privacy and confidentiality concerns on survey participation the case of the 1990 US Census. Public Opinion Quarterly, 57(4), 465-482.
79.Slade, E. L., Williams, M. D., & Dwivedi, Y. K. (2014). Devising a research model to examine adoption of mobile payments: An extension of UTAUT2. The Marketing Review, 14(3), 310-335.
80.Sundar, S. S. (2000). Multimedia effects on processing and perception of online news: A study of picture, audio, and video downloads. Journalism & Mass Communication Quarterly, 77(3), 480-499.
81.Tan, X., Qin, L., Kim, Y., & Hsu, J. (2012). Impact of privacy concern in social networking web sites. Internet Research.
82.Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS quarterly, 561-570.
83.Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
84.Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: toward a conceptual model of utilization. MIS quarterly, 125-143.
85.Triandis, H. C. (1971). Attitude and Attitude Change. Wiley Foundations of Social Psychology Series.
86.Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. In Nebraska symposium on motivation. University of Nebraska Press.
87.Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS quarterly, 695-704.
88.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
89.Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
90.Voigt, K. I., Buliga, O., & Michl, K. (2017). Entertainment on demand: The case of Netflix. In Business Model Pioneers (pp. 127-141). Springer, Cham.
91.Wayne, M.L. (2018), Netflix, Amazon, and branded television content in subscription video on-demand portals. Media, Culture and Society, 40(5), 725-741.
92.Westin, A. F. (1968). Privacy and freedom. Washington and Lee Law Review, 25(1), 166.
93.Wong, C. H., Tan, G. W. H., Loke, S. P., & Ooi, K. B. (2014). Mobile TV: a new form of entertainment?. Industrial Management & Data Systems, 114(7), 1050-1067.
94.Woszczynski, A. B., Roth, P. L., & Segars, A. H. (2002). Exploring the theoretical foundations of playfulness in computer interactions. Computers in Human Behavior, 18(4), 369-388.
95.Wu, Y. L., & Ye, Y. S. (2013). Understanding Impulsive Buying Behavior in Mobile Commerce. In PACIS (p. 142).
96.Xu, X. (2014). Understanding users’ continued use of online games: An application of UTAUT2 in social network games. MMEDIA 2014.
97.Yang, C., Nay, S., & Hoyle, R. H. (2010). Three approaches to using lengthy ordinal scales in structural equation models: Parceling, latent scoring, and shortening scales. Applied Psychological Measurement, 34(2), 122-142.
98.Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour & Information Technology, 32(3), 263-272.
99.Zhou, T. (2013). Understanding the effect of flow on user adoption of mobile games. Personal and ubiquitous computing, 17(4), 741-748.

1.何胤呈(2019)。線上影音串流平台4C策略行銷分析:以愛奇藝、NETFLIX、 LINE TV 為例,政治大學國際經營與貿易學系碩士論文。
3.翁晨語、黃惠萍(2017)。以延伸整合型科技接受模式和數位生活型態探討 LINE TV的使用行為,資訊社會研究,第33期,頁17-63。
4.余雅琳(2019年10月)。沉浸 X 互動-體驗設計新紀元。動腦雜誌,522期,頁30-34。
5.張宗榮、謝欣錦、羅日生(2012)。以整合科技接受模式及沉浸理論探討App 之使用行為模式-以行動社群App為例,國立臺中教育大學數位內容科技學系碩士論文。
6.郭明煌、廖鴻圖、蕭麗齡、王亭雅(2014)。資訊隱私顧慮對社群網站使用者使用意圖影響之研究-以 Facebook 為例,資訊管理學報,頁41-363。
7.郭峰淵、曾繁絹與劉家儀(2006)。從社會認知觀點探討醫師專業知識分享,圖書資訊學刊, 第4卷,第1/2期,頁97-114。
8.陳建文、陳文國、王湘婷、吳建廳(2018)。影響行動遊戲內購買意圖因素之研究:以沉浸經驗與價值觀點為基礎,商學學報,第26 期,頁001-034。
10.彭台光、高月慈、林鉦棽. (2006)。管理研究中的共同方法變異:問題本質、影響、測試和補救,管理學報,第23卷,第1期,頁77-98。

6.iBuzz網路口碑研究中心(2019)。線上串流影音平台正夯,臺灣粉絲最愛誰? 上網時間:2019年9月20日,取自:https://blog.dcplus.com.tw/marketing-knowledge/social_marketing/141193
9.財經新報(2020)。亞馬遜、Netflix 飆歷史高抵銷財報隱憂,費半勁揚。上網時間:2020年4月29日,取自:https://finance.technews.tw/2020/04/17/us-stock-market-0417/
10.Statista Research Department, “Estimated number of active streaming subscribers to Netflix in Taiwan from 2016 to 2020”, Statista, 20 June 2020.
11.Jenny Chang(2020), “Number of Netflix Subscribers in 2020: Growth, Revenue and Usage”, FinancesOnline, 20 June 2020.
Available: https://financesonline.com/number-of-netflix-subscribers/

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔