( 您好!臺灣時間:2021/03/07 00:49
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):LIN, CHIA-CHI
論文名稱:Facebook 電影口碑對電影票房的影響──以台灣為例
論文名稱(外文):The Impact of the Word-of-mouth for Movies on Facebook on the Box Office— Take Taiwan as an Example
指導教授(外文):JANE, WEN-JHAN
外文關鍵詞:Box OfficeOnline Word of MouthPositive Feedback MechanismEndogeneityWeak Instrument Test
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
研究結果發現:一、口碑數量對電影票房具有正向顯著影響,表示越多人討論的電影票房會越好。二、口碑負面質量對電影票房具有正向顯著影響,表示電影負面評論可能引起台灣觀眾對電影的好奇心,使電影票房上升。三、口碑正面質量對電影票房具有正向顯著影響,表示觀眾對於擁有好評的電影保持一定信心,進而使票房上升。四、本文首次嘗試使用在同時期上映的同類型電影總口碑數量,以及電影出品商是否為六大電影巨頭公司,作為工具變數,且根據弱工具檢定(Cragg-Donald Test)結果顯示為有效工具變數,進一步實證結果亦支持前述的研究發現。五、將本文研究結果與先前文獻做比對後發現,線上口碑的邊際效果在控制內生性下,其效果小於先前文獻的估計,顯示估計口碑效果時處理內生性問題的重要性。且負面口碑質量對票房收入的影響方向與外國文獻的結果相反,而與台灣電影市場的文獻相同。

With the development of network technology, online word-of-mouth (WOM) plays an increasingly important role in consumer decision. Therefore, this paper takes Taiwan’s movie market as an example to explore the impact of the WOM on the box office. Using WOM on Facebook (FB) and box office data from 2017 to 2018, we collected 1,381 movies released in Taiwan. The ordinary least squares and two-stage least squares models are employed in the regression analysis.
The results of the study found that: (I) WOM volume has a positive and significant effect on the box office, indicating that if more people discuss the movie, the box office will be better. (II) Negative WOM has a positive and significant effect on the box office, indicating that negative reviews may cause Taiwanese audiences to be curious about the movie, so that the box office rises. (III) Positive WOM has a positive and significant effect on the box office, indicating that audiences have confidence in the movie which has positive WOM, and thus the box office rises. (IV) This paper has tried to use the number of WOM of the same genre as movie i during the same week, and whether the movie producer is the six major movie companies as an instrumental variable to solve the endogenous problem between WOM and the box office, and according to the Cragg-Donald Test, the result is valid. (V) After comparing the results to the previous literature, we found that the marginal effect of WOM is less than foreign literature and the effect of negative WOM is contrary to the results of foreign literature, but the same as the literature in Taiwan’s movie market.
To sum up, FB WOM plays a role in the box office revenue. Movie studios should make more use of FB for effective viral marketing. Through the management of FB WOM, movie studio should evaluate and decide how to release the new movie and choose the appropriate future market.

第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 4
第三節 研究問題整理 6
第四節 研究範圍與限制 7
第貳章 文獻探討 8
第一節 經濟理論 8
第二節 文獻回顧──專家評論 9
第三節 文獻回顧──大眾口碑 12
第四節 文獻回顧──電影票房 19
第參章 方法與資料 22
第一節 研究架構 22
第二節 研究流程 23
第三節 實證方法與模型 24
第四節 資料介紹與敘述統計 27
第肆章 實證結果 38
第一節 相關係數分析 38
第二節 迴歸分析結果 45
第三節 小結 72
第伍章 結論與討論 76
參考文獻 78

表 3-1 變數定義表 30
表 3-2 敘述統計表 36
表 4-1 相關係數表 39
表 4-2 OLS 模型實證結果 (WOM 數量) 47
表 4-3 OLS 模型實證結果 (WOM 質量) 51
表 4-4 2SLS 模型實證結果 (WOM 數量,IV=STWOM) 55
表 4-5 2SLS 模型實證結果 (WOM 質量,IV=STWOM) 60
表 4-6 2SLS 模型實證結果 (WOM 數量,IV=BigSix) 65
表 4-7 2SLS 模型實證結果 (WOM 質量,IV=BigSix) 69
表 4-8 實證結果與文獻對照表 74

圖 1-1 口碑的正面反饋機制 2
圖 1-2 2018 年 1 月統計台灣最多人使用的前 12 個社群網站 4
圖 1-3 上映前一周及當周台灣地區的 FB 口碑數(平均 vs.《玩命關頭 8》) 6
圖 3-1 FB 口碑呈現圖──以電影《羅賓漢崛起》為例 28
圖 3-2 票房與各項口碑數量之散布圖 33
圖 3-3 票房與各項口碑質量之散布圖 33
圖 3-4 電影類型圓餅圖 34
圖 3-5 電影分級圓餅圖 34

蔡瑤昇、郭宗麟、高國書與呂文琴 (2011)。網路口碑特性與電影票房銷售之動態關係研究。中華管理評論國際學報,14 (4)。
Alaveras, G., Gomez-Herrera, E., & Martens, B. (2018). Cross-border circulation of films and cultural diversity in the EU. Journal of Cultural Economics, 42(4), 645-676.
Antoniadis, I., Paltsoglou, S., & Patoulidis, V. (2019). Post popularity and reactions in retail brand pages on Facebook. International Journal of Retail & Distribution Management.
Bae, G., & Kim, H. J. (2019). The impact of movie titles on box office success. Journal of Business Research, 103, 100-109.
Basuroy, S., Chatterjee, S., & Ravid, S. A. (2003). How critical are critical reviews? The box office effects of film critics, star power, and budgets. Journal of marketing, 67(4), 103-117.
Basuroy, S., Ravid, S. A., & Hall, B. (2014). How relevant are experts in the internet age? Evidence from the motion pictures industry. Working Paper, University of Oklahoma.
Bhatnagar, Amit and Sanjoy Ghose (2004), “Online Information Search Termination Patterns Across Product Categories and Consumer Demographics,” Journal of Retailing, 80 (3), 221–8.
Cabral, L., & Natividad, G. (2018). Exporting Movies: Country Proximity, Release Strategy, and Performance (No. 18-14).
Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Marketing Science, 29(5), 944-957.
Cragg, J. G., & Donald, S. G. (1993). Testing identifiability and specification in instrumental variable models. Econometric Theory, 9(2), 222-240.
Dellarocas, C., & Narayan, R. (2006). A statistical measure of a population’s propensity to engage in post-purchase online word-of-mouth. Statistical science, 21(2), 277-285.
Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of retailing, 84(2), 233-242.
Elberse, A., & Eliashberg, J. (2003). Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures. Marketing science, 22(3), 329-354.
Eliashberg, J., & Shugan, S. M. (1997). Film critics: Influencers or predictors?. Journal of marketing, 61(2), 68-78.
Ellison, Glenn and Drew Fudenberg (1995), “Word-of-Mouth Communication and Social Learning,” Quarterly Journal of Economics, 110 (1), 93–125.
Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing science, 23(4), 545-560.
Hennig-Thurau, T., Houston, M. B., & Sridhar, S. (2006). Can good marketing carry a bad product? Evidence from the motion picture industry. Marketing Letters, 17(3), 205-219.
Hofstede, G. (2011). Dimensionalizing cultures: The Hofstede model in context. Online readings in psychology and culture, 2(1).
Hsu, Y. L., & Jane, W. J. (2016). Bidirectional causality for word of mouth and the movie box office: An empirical investigation of panel data. Journal of Media Economics, 29(3), 139-152.
Kim, T., Hong, J., & Koo, H. (2013). Forecasting box-office revenue by considering social network services in the Korean market. Sains Humanika, 64(2).
Kogut, B., & Singh, H. (1988). The effect of national culture on the choice of entry mode. Journal of international business studies, 19(3), 411-432.
Liu, Q., Zhang, X., Zhang, L., & Zhao, Y. (2018). The interaction effects of information cascades, word of mouth and recommendation systems on online reading behavior: An empirical investigation. Electronic Commerce Research, 1-27.
Mayzlin, D., Dover, Y., & Chevalier, J. (2014). Promotional reviews: An empirical investigation of online review manipulation. American Economic Review, 104(8), 2421-55.
Moon, S., Bergey, P. K., & Iacobucci, D. (2010). Dynamic effects among movie ratings, movie revenues, and viewer satisfaction. Journal of marketing, 74(1), 108-121.
Rosen, E. (2009). The anatomy of buzz revisited: Real-life lessons in word-of-mouth marketing. New York, NY: Broadway Business.
Sorensen, A. T., & Rasmussen, S. J. (2004). Is any publicity good publicity? A note on the impact of book reviews. NBER Working paper, Stanford University.
Srinivasan, S. S., Anderson, R., & Ponnavolu, K. (2002). Customer loyalty in e-commerce: an exploration of its antecedents and consequences. Journal of retailing, 78(1), 41-50.
Staiger, D., Stock, J. H., & Watson, M. W. (1997). The NAIRU, unemployment and monetary policy. Journal of economic perspectives, 11(1), 33-49.

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔