跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周彥斈
研究生(外文):CHOU,YEN-HSUEH
論文名稱:使用於5G n78頻帶之陣列天線
論文名稱(外文):Array Antenna for 5G n78 Frequency Band
指導教授:徐文修潘善政潘善政引用關係
指導教授(外文):HSU,WEN-HSIUPAN,SHAN-CHENG
口試委員:黃智裕
口試委員(外文):HUANG,CHIH-YU
口試日期:2020-07-10
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:電腦與通訊系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:50
中文關鍵詞:5G n78陣列天線匹配電路小型基站
外文關鍵詞:5G n78Array AntennaMatching circuitSmall cell Stations
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要為使用於5G n78頻帶之陣列天線,設計的頻帶為5G n78頻帶(3300–3800) MHz,以不同的微帶線轉換方式,來有效達到良好的天線增益及匹配。主要分成兩個主題,兩個主題皆使用陣列天線,第一個主題為探討在 2x2陣列天線,在每個天線單元有無轉換器之結果,比較兩者增益及匹配電路表現,也探討此設計的方式,是否讓匹配電路因透過減少路徑來達到損耗降低的效果,以提昇較好的天線增益;第二個主題為延伸第一個主題的 2x2天線之比較後增益及匹配電路較好的去延伸至 4x4 的陣列天線,為了使天線能得到良好的匹配電路,在微帶線轉換歐姆處使用倒角的方式去切割。研究結果得知有倒角的增益及匹配電路得到了小幅度優化;第三個主題為經過倒角改善後的 4x4 陣列天線增加空氣層設計,藉由空氣層的穩定性優點來使天線得到更好的匹配電路,進而完整涵蓋 5G n78 (3300~3800) MHz 操作頻段。
In this dissertation, the study mainly focuses on the Array Antenna for 5G n78 Frequency Band. There are three parts in this dissertation. The three parts use antennas in a tandem array design, all designed for 5G n78 band (3300 MHz–3800 MHz). Small cell station designed in a low-profile manner with good antenna gain. The first part is a 2×2 array antenna of tandem antenna manner. Mainly discuss the advantages of array antenna of tandem antenna design. By using the antenna string method, the path of the matching circuit is reduced to achieve the effect of loss reduction, and a better antenna gain can be achieved. The second part is a 2×2 array antenna of tandem antenna manner .That extends the of array antenna of first part. The 2×2 tandem antenna is extended to a 4x4 tandem antenna. The matching circuit uses the design of the Stub. The application of the Stub can adjust the impedance of the antenna so that the antenna can have a wide frequency effect. The third part is to optimize the array antenna of 4x4 tandem antenna for the second part. Optimize the matching circuit to remove the Stub design and without chamfering design to reduce the loss, and the antenna gain can achieve better results. By adjusting the length and width of the antenna, the high and low frequencies can be controlled, and then it can effectively stimulate the 5G n78 operating frequency band.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻導覽 3
1.4 研究目的 4
第二章 天線基本原理及陣列天線之介紹 6
2.1 天線輻射原理 6
2.2 天線的性能參數 9
2.3 陣列天線之介紹 13
2.4 陣列場型 16
第三章 共平面2x2陣列天線設計 18
3.1 前言 18
3.2 天線設計與工作原理 19
3.3 實驗結果與討論 23
3.4 結論 27
第四章 延伸共平面4x4陣列天線設計倒角進行優化結果 28
4.1 前言 28

4.2天線設計與工作原理 28
4.3實驗結果與討論 30
4.4結論 36
第五章 使用於5G n78頻帶之空氣層設計4×4陣列天線 39
5.1天線設計與工作原理 39
5.2實驗結果與討論 40
5.3結論 45
第六章 結論 47
參考文獻 49
[1]C. H. Cai, J. S. Row, K. L. Wong,“Dual-Frequency Microstrip Antenna with Dual Circular Polarization”Electroics Letters, Vol. 42, pp. 1261-1262, 2006.
[2]C. L. Tang, C. M. Chiang, S. C. Lai, W. H. Hsu, W. Y. Chen, “A MIMO dual-polarized antenna array for small cell application” IEEE Transactions On Antenna And Propagation, October 2018.
[3]C. S. Lee, T. H. Hsieh, “LINEAR MICROSTRIP ARRAY ANTENNAWITH A SIMPLE FEED NETWORK, ” Microwave and Optical Technology, 19 April 1999.
[4]C. Y. D. Sim, T. Y. Han, C. J. Chi, B. Y. Chen, “A 2 × 2 array antenna with circular polarization and conical beam radiation” Microwave Opt. Technol. Lett., May 2013.
[5]D. Sipal, M. P. Abegaonkar, S. K. Koul, “Compact planar 2 × 2 and 4 × 4 UWB mimo antenna arrays for portable wireless devices” Microwave Opt. Technol. Lett., December 2017.
[6]G. Kan, W. Lin, C. Liu, D. Zou, “An array antenna based on coplanar parasitic patch structure”Microwave Opt. Technol. Lett., March 2018.
[7]H. Evans, A. Sambell “Wideband 2 × 2 sequentially rotated patch antenna array with a series feed” Microwave Opt. Technol. Lett., January 2004.
[8]H. S. Jang, W. G. Lim, W. I. Son, S. Y. Cha, J. W. Yu, “Microstrip patch array antenna with high isolation characteristic” Microwave Opt. Technol. Lett., February 2012.
[9]H. T. Cgattha, Y. Huang, S. J. Boyes, X. Zhu, “Polarization and Patten –Based Dual-Feed Planner Inverted-F Antenna” IEEE Transactions On Antennas And Propagation, Vol. 60, 3, pp. 1532-1539, March 2012.
[10]J. A. Ansari, P. Singh, N. P. Yadav, “Analysis of wideband multilayer patch antenna with two parasitic elements” Microwave Opt. Technol. Lett., March 2009.
[11]J. H. Choi, Y. S. Shin, S. O. Park, “Performance evaluation of 2 × 2 MIMO handset antenna arrays for mobile WiMAX applications” Microwave Opt. Technol. Lett., March 2009.
[12]J. W. Wu, J. H. Lu, “2 × 2 Circularly polarized patch antenna arrays with broadband operation” Microwave Opt. Technol. Lett., October 2003.
[13]L. Lu, J. C. Coetzee, “Characteristics of a two‐layer microstrip patch antenna for Bluetooth applications” Microwave Opt. Technol. Lett., February 2006.
[14]M. Elsdon, Y. Qin, “Dual‐frequency planar‐fed microstrip patch antenna” Microwave Opt. Technol. Lett., April 2006.
[15]M. Sanad, “A compact Dual-Broaband Microstrip Antenna Having Both Stacked and Planar Parasitic Elements” Antennas and Propagation Society International Symposium, pp. 6-9, 1996.
[16]M. Sanad, “A compact Dual-Broadband Microstrip Antenna Having Both Stacked and Planar Parasitic Elements” Antennas and Propagation Society International Symposium, pp. 6-9, 1996.
[17]N. M. Sameena, R. B. Konda, S. N. Mulgi, “Broadband, high‐gain complementary‐symmetry microstrip array antenna” Microwave Opt. Technol. Lett., July 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top