(3.236.175.108) 您好!臺灣時間:2021/02/27 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林亭㚬
研究生(外文):LIN, TING-CHUN
論文名稱:奈米銀/高分子複合材料的製備與環境工程的應用
論文名稱(外文):Synthesis and characterization of silver nanoparticles/polymer composites for environmental applications
指導教授:陳志彥陳志彥引用關係江禎立
指導教授(外文):CHEN, CHUH‐YEANCHIANG, CHEN-LI
口試委員:李玉郎陳東煌
口試委員(外文):LEE, YUH-LANGCHEN, DONG-HWANG
口試日期:2020-07-06
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:螯合樹脂β-丙胺酸鈉奈米銀甲基橙降解
外文關鍵詞:Chelating resinβ-AlaineSilver nanoparticlesDegradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究混合不同比例的縮水甘油甲基丙烯酸酯(GMA)與甲基丙烯酸甲酯 (MMA),透過懸浮聚合法而得到三種交聯態的聚縮水甘油甲基丙烯酸酯(簡稱 cPGMA)。接著以 β-丙胺酸鈉分別與這三種 cPGMA 反應而得到側鏈具丙胺酸鈉但 含量不同的螯合樹脂(簡稱為 PAL)。利用傅立葉轉換紅外線光譜儀(FT-IR)與能量分 散光譜儀(EDS)確認 PAL 是製備成功的。當 PAL 吸附 Ag+ 時,約 20 分鐘可達最高 值,而吸附量依 GMA (或丙胺酸鈉)含量的高低依序為 1.24、0.8 及 0.52 mmol/(g PAL)。將吸附 Ag+ 達飽和的 PAL 分別與 NaBH4 反應後,得到 Ag/PAL60、Ag/PAL40 及 Ag/PAL25 等三種奈米 Ag/PAL 複合材料。而掃描式電子顯微鏡(SEM)的觀察顯 示三種 PAL 樹脂的粒徑都在 250 μm 上下;GMA 含量最少的 Ag/PAL25 之奈米銀 雖然有疏密不均的區域但粒徑都在 20~30 nm 且間隔明顯。而 Ag/PAL40 及 Ag/PAL60 之奈米 Ag 都是密集且均勻的分佈在顆粒表面,雖然大小都在 40 nm 上 下,但 GMA 含量最多的 Ag/PAL60 之奈米 Ag 的間隙則小於 Ag/PAL40 之間隙。 在催化效能方面,不管是黑暗中、自然環境下或照射可見光,此三種奈米 Ag/PAL 皆能提升硼氫化鈉降解甲基橙的速率,而催化效果依序是 Ag/PAL60 > Ag/PAL40 > Ag/PAL25 且連續 6 次的回收/再催化反應之降解成效相當良好。至於催化硼氫化鈉 反應水的產氫方面,三種 Ag/PAL 也都可以增加產氫的速率且以 Ag/PAL60 的效果 最佳;而經過連續 5 次回收/再催化測試後,其催化效能仍可達到初始值的 78%, 同樣具有重複使用的特性。
In this study, three crosslinked poly (glycidyl methacrylate) (cPGMA) were prepared through suspension copolymerizations of mixing different ratios of glycidyl methacrylate and methyl methacrylate. Then they reacted with β-Alaine to form three chelating resins (PAL60, PAL40, PAL25) for adsorbing Ag+ form aqueous solution. The analyses of Fourier transform infrared spectroscopy and Energy-dispersive X-ray spectroscopy confirmed that the chelating resins were synthesized successfully. The content ofβ-Alaine in the resins were PAL60 > PAL40 > PAL25. The maximum adsorption capacities of PAL60, PAL40 and PAL 25 were 1.24, 0.8 and 0.52 mmol/g, respectively. After adsorbing Ag+ to maximum values, the three resins were reacted with NaBH4 to form three Ag nanoparticles/PAL composites (Ag/PAL60, Ag/PAL40 and Ag/PAL25). SEM morphology assessed that the amounts of Ag nanoparticles on the surface were PAL60 > PAL40 > PAL25 and the diameters of Ag nanoparticles were 40 and 20~30 nm. Ag/PAL60 showed the best catalytic performance for degradation of Methyl orange in the presence of NaBH4. It could be reused several times with 8% loss in their catalytic activity. Moreover, all the nanocomposites were also successfully used as reusable catalysts for the reaction of H2O with NaBH4 to produce H2.
摘要 ---------------------------------------------------------------------------------------------------I
Abstract -------------------------------------------------------------------------------------------- II
誌謝 ------------------------------------------------------------------------------------------------ III
目錄 ------------------------------------------------------------------------------------------------ IV
表目錄 --------------------------------------------------------------------------------------------- VI
圖目錄 -------------------------------------------------------------------------------------------- VII
第一章 緒論 -------------------------------------------------------------------------------------- 1
1-1 前言 -------------------------------------------------------------------------------------- 1
1-2 染料簡介[11-13]---------------------------------------------------------------------------- 1
1-2-1 染料的發色原理 ---------------------------------------------------------------------- 1
1-2-2 染料的分類 ---------------------------------------------------------------------------- 2
1-2-3 處理染料污染的方法 ---------------------------------------------------------------- 4
1-3 奈米材料介紹[27-32]--------------------------------------------------------------------- 5
1-3-1 奈米材料的性質 ---------------------------------------------------------------------- 5
1-3-2 奈米材料的製備方法 ---------------------------------------------------------------- 6
1-3-3 奈米材料的常見難題與解決辦法 ------------------------------------------------- 7
1-4 螯合高分子簡介---------------------------------------------------------------------------- 8
1-4-1 螯合高分子的分類 ------------------------------------------------------------------- 8
1-4-2 螯合高分子的製備方法 ------------------------------------------------------------10
1-4-3 螯合高分子的應用 ------------------------------------------------------------------10
1-5 研究動機------------------------------------------------------------------------------------12
第二章 實驗內容---------------------------------------------------------------------------------14
2-1 藥品 -----------------------------------------------------------------------------------------14
2-2 儀器設備-----------------------------------------------------------------------------------15
2-3 實驗步驟------------------------------------------------------------------------------------17
2-3-1 螯合樹脂 PAL 的製備與分析-----------------------------------------------------17

V

2-3-2 奈米 Ag/PAL 複合材料的製備與分析 -----------------------------------------20
2-3-3 奈米 Ag/PAL 複合材料的應用 ---------------------------------------------------21
第三章 結果與討論------------------------------------------------------------------------------23
3-1 螯合樹脂(PAL)的製備-------------------------------------------------------------------23
3-2 螯合樹脂 PAL 的分析 -------------------------------------------------------------------24
3-2-1 傅立葉轉換紅外線光譜儀(FT-IR)分析-----------------------------------------24
3-2-2 EDS 的分析---------------------------------------------------------------------------25
3-2-3 PAL 吸附 Ag+ 的吸附容量分析--------------------------------------------------27
3-3 奈米 Ag/PAL 複合材料的製備與分析-----------------------------------------------28
3-3-1 奈米 Ag/PAL 複合材料的製備 --------------------------------------------------28
3-3-2 EDS 與 XRD 鑑定奈米 Ag/PAL 複合材料 ------------------------------------29
3-3-3 以 SEM 觀察奈米 Ag/PAL 複合材料 -------------------------------------------31
3-3-4 Elemental Mapping 觀察 Ag/PAL 複合材料----------------------------------36
3-4 奈米 Ag/PAL 複合材料的應用--------------------------------------------------------38
3-4-1 奈米 Ag/PAL 催化硼氫化鈉降解甲基橙的效能分析------------------------38
3-4-2 奈米 Ag/PAL 對 H2O/硼氫化鈉產氫效能的分析-------------------------------49
第四章 結論---------------------------------------------------------------------------------------52
參考文獻 -------------------------------------------------------------------------------------------53
1. A.O. Abo El Naga, S.A. Shaban, F.Y.A. El Kady, "Metal organic framework-derived nitrogen-doped nanoporous carbon as an efficient adsorbent for methyl orange removal from aqueous solution", Journal of the Taiwan Institute of Chemical Engineers, 93, 363-373(2018).
2. S. Natarajan, H.C. Bajaj, R.J. Tayade, "Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process", Journal of Environmrntal Sciences, 65,201-222(2018).
3. C.M. Hussain, R. Keçili, "Chapter 1 - Environmental pollution and environmental analysis", Modern Environmental Analysis Techniques for Pollutants,1-36(2020).
4. S. Naghdi, M. Sajjadi, M. Nasrollahzadeh, K.Y. Rhee, S.M. Sajadi, B. Jaleh, "Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes", Journal of the Taiwan Institute of Chemical Engineers, 86, 158-173(2018).
5. Z. Issaabadi, M. Nasrollahzadeh, S.M. Sajadi, "Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity", Journal of Cleaner Production, 142, 3584-3591(2017).
6. N.A. Youssef, S.A. Shaban, F.A. Ibrahim, A.S. Mahmouda, "Degradation of methyl orange using Fenton catalytic reaction", Egyptian Journal of Petroleum, 25,317-321(2016).
7. M. Bhowmik, K. Deb, A. Debnath, B. Saha, "Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: Neural network modeling and response surface methodology optimization", Appllied Organometallic Chemistry, 32, 4186–4197(2018).
8. M.C. Guimarães, E.G. da Mota, D.G. Silva, M.P. Freitas, "aug-MIA-QSPR modelling of the toxicities of anilines and phenols to Vibrio fischeri and Pseudokirchneriella subcapitata", Chemometrics and Intelligent Laboratory Systems, 134, 53-57(2014).
9. T.K.S. Janssens, D. Giesen, J. Mariën, N.M. van Straalen, C.A.M. van Gestel, D. Roelofs, "Narcotic mechanisms of acute toxicity of chlorinated anilines in Folsomia candida (Collembola) revealed by gene expression analysis", 54 Environment International, 37, 929-939(2011).
10. N. Dom, D. Knapen, D. Benoot, I. Nobels, R. Blust, "Aquatic multi-species acute toxicity of (chlorinated) anilines: Experimental versus predicted data", Chemosphere, 81, 177-186(2010).
11. 邱永亮,染料之合成與特性,財團法人徐氏基金會(1979)。
12. 廖明隆,顏料化學,台灣文源書局有限公司(1982)。
13. 小西謙三,黑木宣彥,工業合成染料化學,復漢出版社(1984)。
14. N.A. Awais, T. Kamal, M. Ul-Islam, A. Khan, S.J. Shah, A. Zada, “Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction”, International Journal of Biological Macromolecules, 111, 832-838(2018).
15. P.T. Lum, K.Y. Foo, N.A. Zakaria, P. Palaniandy, "Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: A review", Materials Chemistry and Physics, 241, 122405(2020)."
16. G.-H. Lai, T.-C. Huang, Y.-H. Pai, B.-S. Huang, M.-H. Tsai, T.-I. Yang, Y.-H. Chung, "Preparation of highly-stable and recyclable novel Au/ZrP composite catalyst for 4-nitrophenol reduction", Journal of the Taiwan Institute of Chemical Engineers, 95, 525-531(2019).
17. S. Muneekaew, K.-C. Chang, A. Kurniawan, Y. Shirosaki, M.-J. Wang, "Microwave plasma treated composites of Cu/Cu2O nanoparticles on electrospun poly(N-vinylpyrrolidone) fibers as highly effective photocatalysts for reduction of organic dyes and 4-nitrophenol", Journal of the Taiwan Institute of Chemical Engineers, 107, 171-181(2020).
18. J.B. Fathima, A. Pugazhendhi, M. Oves, R. Venis, "Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes", Journal of Molecular Liquids, 260, 1-8(2018).
19. A. Saad, C. Vard, M. Abderrabba, M. M. Chehimi, "Triazole/triazine-functionalized mesoporous silica as a hybrid material support for palladium nanocatalyst", Langmuir, 33(28), 7137-7146(2017).
20. M. Yazdankhah, H. Veisi, S. Hemmati, "In situ immobilized palladium nanoparticles (Pd NPs) on fritillaria imperialis flower extract-modified graphene and their catalytic activity for reduction of 4-nitrophenol", Journal of the Taiwan Institute of Chemical Engineers, 91, 38-46(2018). 55
21. S. Gao, T. Feng, C. Feng, N. Shang, C. Wang, "Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity", Journal of Colloid and Interface Science, 466, 284-290(2016).
22. T. Kamal, I. Ahmada, S.B. Khana, A.M. Asiria, "Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers", Carbohydrate Polymers, 157, 294-302(2017).
23. L. Zhang, Z. Liu, Y. Wang, R. Xie, X.-J. Ju, W. Wang, L.-G. Lin, L.-Y. Chu, "Facile immobilization of Ag nanoparticles on microchannel walls in microreactors for catalytic applications", Chemical Engineering Journal, 309, 691-699(2017).
24. M. Erdoğan, "Preparation and stabilization of Ag nanoparticles with N-vinyl-2-pyrrolidone grafted-poly(vinyl alcohol) in an organic medium and investigation of their usability in the catalytic dye decolorization", Colloid and Interface Science Communications, 34, 100222(2020).
25. T.M.S. Dawoud, V. Pavitra, P. Ahmad, A. Syed, G. Nagaraju, "Photocatalytic degradation of an organic dye using Ag doped ZrO2 nanoparticles: Milk powder facilitated eco-friendly synthesis", Journal of King Saud University – Science, 32(3), 1872-1878(2020).
26. B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, “Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water”, Journal of Colloid and Interface Science, 493, 85-97(2017).
27. 馬振基,"奈米材料科技原理與應用",全華出版社(2017)。
28. 劉吉平、郝向陽,"奈米科學與技術",世茂出版有限公司(2003)。
29. 王世敏、許祖勛、傅晶,"奈米材料原理與製備",五南圖書有限公司(2004)。
30. 張立德,"奈米材料",五南圖書有限公司(2002)。
31. 呂宗昕,"圖解奈米科技與光觸媒",商周出版社,(2003)。
32. N. Rajput, "Methods of preparation of nanoparticles - A Review", International Journal of Advances in Engineering & Technology, 7, 1806-1811(2015).
33. D. Silvestri, S. Wacławek, A. Venkateshaiah, K. Krawczyk, B. Sobel, V.V.T. Padil, M. Černík, R.S. Varma, "Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic 56 activity", Carbohydrate Polymers, 232, 115806(2020)..
34. B. Bhaduri, T. Polubesova, "Facile synthesis of carbon-supported silver nanoparticles as an efficient reduction catalyst for aqueous 2-methyl-p-nitrophenol", Materials Letters, 267, 127546(2020).
35. M. Miyagawa, Y. Ikeyama, H. Kotake, T. Maeda, H. Tanaka, "Environmental-friendly degradation of clay-hybridized Cu nanoparticles by carboxylic acids", Chemical Physics Letters, 753,137615(2020).
36. Z. Chen, Q. Zhang, L. Zeng, J. Zhang, Z. Liu, M. Zhang, X. Zhang, H. Xu, H. Song, C. Tao, "Light-triggered OVA release based on CuS@poly(lactide-co- glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumor", Pharmacological Research, 158, 104902(2020).
37. 陳志彥,"具側鏈亞胺乙二酸高分子與金屬離子之螯合性質的探討及其應用", 國立成功大學化學工程系博士論文(2002)。
38. W. Wang, Z. Zhu, M. Zhang, S. Wang, C. Qu, "Synthesis of a novel magnetic multi-amine decorated resin for the adsorption of tetracycline and copper", Journal of the Taiwan Institute of Chemical Engineers, 106, 130-137(2020).
39. J. Dong, Y. Du, R. Duyu, Y. Shang, S. Zhang, R. Han, "Adsorption of copper ion from solution by polyethylenimine modified wheat straw", Bioresource Technology Reports, 6, 96-102(2019).
40. S. Zhang, Q. Shi, G. Korfiatis, C. Christodoulatos, H. Wang, X. Meng, "Chromate removal by electrospun PVA/PEI nanofibers: adsorption, reduction, and effects of co-existing ions", Chemical Engineering Journal, 387, 124179(2020).
41. W. Qu, D. He, Y. Guo, Y. Tang, R. J. Song,"Characterization of modified Alternanthera philoxeroides by diethylenetriamine and its application in the adsorption of copper(II) ions in aqueous solution", Environmental Science and Pollution Research, 26,21189–21200(2019).
42. S. Asayama, M. Sakata, H. Kawakami, "Structure-activity relationship between Zn2+ -chelated alkylated poly(1-vinylimidazole) and gene transfection", Journal of Inorganic Biochemistry, 173, 120-125(2017).
43. P. Xiao, D. Han, M. Zhai, L. Xu, H. Li, "Comparison with adsorption of Re (VII) by two different γ-radiation synthesized silica-grafting of vinylimidazole/4-vinylpyridine adsorbents", Journal of Hazardous Materials, 57 324(B), 711-723(2017).
44. B. Zhang, S. Wang, L. Fu, L. Zhang, J. Zhao, C. Wang, "Selective high capacity adsorption of Au(III) from aqueous solution by poly(glycidyl methacrylate) functionalized with 2,6‐diaminopyridine", Polymer Bulletin, 76,4017-4033(2019).
45. L. Zhang, S. Tang, F. He, Y. Liu, W. Mao, Y. Guan, "Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment", Chemical Engineering Journal, 378, 122215(2019).
46. M.A. Badawi, N.A. Negm, M.T.H.A. Kana,H.H. Hefni, M.M.A. Moneem, "Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism", International Journal of Biological Macromolecules, 99, 465-476(2017).
47. W. Maatar, S. Boufi, "Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent", Carbohydrate Polymers, 126, 199-207(2015).
48. L. Zhijiang, L. Meng, X. Huining, H. Zhihong, "Novel amino acid modified cellulose for copper(II) adsorption via Spectrophotometry", Imaging Science and Photochemistry, 35, 274-280(2017).
49. Y. Li, R. Zhao, Y. Pang, X. Qiu, D. Yang, "Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 187-194(2018).
50. Z. Liu, Y. Zhou, M. Guo, B. Lv, Z. Wu, W. Zhou, "Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent", Journal of Hazardous Materials, 371, 712-720(2019).
51. M. Cegłowski, G. Schroeder, "Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions", Chemical Engineering Journal, 263,402-411(2015).
52. W. Lu, Z. Dai, L Li, J. Liu, S. Wang, H. Yang, C. Cao, L. Liu, T. Chen, B. Zhu, L. Sun, L. Chen, H. Li, P. Zhang, "Preparation of composite hydrogel (PCG) and its adsorption performance for uranium(VI)", Journal of Cleaner Production, 188, 655-661(2020). 58
53. S. Zhuang, R. Cheng, M. Kang, J. Wang, "Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads", Journal of Cleaner Production, 188, 655-661(2018).
54. S.M. El-Bahy, Z.M. El-Bahy, "Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu(II), Mn(II) and Ni(II) by batch and column study", Journal of Environmental Chemical Engineering, 4, 276-286(2016).
55. C. Xiong, S. Wang, L. Zhang, "Selective recovery mechanism of Au(III) from an aqueous solution by trimethyl phosphate modified poly(glycidyl methacrylate) ", Journal of the Taiwan Institute of Chemical Engineers, 95, 55-64(2019).
56. W.-L. Xiong, J. Zhang, J.-X. Yu, R.-A. Chi, "Competitive adsorption behavior and mechanism for Pb2+ selective removal from aqueous solution on phosphoric acid modified sugarcane bagasse fixed-bed column", Process Safety and Environmental Protection, 124, 75-83(2019).
57. T. Velempini, K. Pillay, X.Y. Mbianda, O.A. Arotiba, "Carboxymethyl cellulose thiol-imprinted polymers: Synthesis, characterization and selective Hg(II) adsorption", Journal of Environmental Sciences, 79, 280-296(2019).
58. S. S. Linsa, C. F. Virgensa, W. N. L. dos Santos, I. H. S. Estevam, G. C. Brandão, C. S. A. Felix, S. L. C. Ferreira, "On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(II) in natural waters by CV AFS", Microchemical Journal, 105,104075(2019).
59. M. Li, Y. Gong, W. Wang, G. Xu, Y. Liu, J. Guo, "In-situ reduced silver nanoparticles on populus fiber and the catalytic application", Applied Surface Science, 394(1), 351-357(2017).
60. C.Y. Chen, C.L. Chiang, "Preparation of cotton fibers with antibacterial silver nanoparticles", Materials Letters, 62, 3607–3609(2008).
61. I.U. Castro, F. Stuber, A. Fabregat, J. Font, A. Fortuny, C. Bengoa, "Supported Cu(II) polymer catalysts for aqueous phenol oxidation", Journal of Hazardous Materials, 163, 809-815(2009).
62. C.Y. Chen, C.C. Wang, W.S. Li, K. Cheng, J.F. Kuo, "Peroxidation of benzaldehyde by polymer-immobilized cobalt-EDTA complex", Reactive & Functional Polymers, 51, 69-78(2002). 59 .
63. B. Yuan, G. Luo, J. Liang, F. Cheng, W. Zhang, J. Chen, "Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery", Journal of Energy Chemistry, 38, 55-59(2019).
64. Y.H. Liang, C.C. Wang, C.Y. Chen, "Conductivity and characterization of plasticized polymer electrolyte based on (polyacrylonitrile-b-polyethylene glycol) copolymer", Journal of Power Sources, 172(2), 886-892(2007).
65. J.W. Yoon, T.U. Yoon, E.J. Kim, A.R. Kim, T.S. Jung, S.S. Han, Y.S. Bae, "Highly selective adsorption of CO over CO2 in a Cu(I)-chelated porous organic polymer", Journal of Hazardous Materials, 341, 321-327(2018).
66. C.C. Wang, M.H. Cheng, C.Y. Chen, C.Y. Chen, “Facilitated Transport of Molecular Oxygen in the Cobalt-Chelated Copolymer Membranes Prepared by Soap-free Emulsion Polymerization”, Journal of Membrane Science, 208, 133-145(2002).
67. C.L. Chiang, C.Y. Chen, L.W. Chang, "Purification of Recombinant Enhanced Green Fluorescent Protein Expressed in Escherichia coli with New Immobilized Metal Ion Affinity Magnetic Absorbents", Chromatography B, 864, 116-122(2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔