(3.238.186.43) 您好!臺灣時間:2021/02/28 15:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁偉翔
研究生(外文):WENG, WEI-HSIANG
論文名稱:應用具巰基乙酸基之螯合樹脂回收水中重金屬離子之研究
論文名稱(外文):Recovery of heavy metal ions from aqueous solutions by a chelating resin containing thioglycolate groups
指導教授:陳志彥陳志彥引用關係江禎立
指導教授(外文):CHEN, ZHI-YANCHIANG, CHEN-LI
口試委員:陳志彥李玉郎陳東煌
口試委員(外文):CHEN, ZHI-YANLI, YU-LANGCHEN, DONG-HUANG
口試日期:2020-07-06
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:懸浮聚合法螯合樹脂巰基乙酸重金屬離子吸附
外文關鍵詞:suspension polymerizationchelating resinsodium thiomalateadsorptionheavy metal ions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究先以懸浮聚合法製備顆粒狀的交聯型聚縮水甘油甲基丙烯酸酯(簡稱 cPGMA),再以巰基乙酸鈉和cPGMA 進行反應而得到側鏈含巰基乙酸鈉的螯合樹 脂(簡稱PGSA)。透過傅立葉轉換紅外線光譜儀(FT-IR)與能量分散光譜儀(EDS)的 分析,證實巰基乙酸鈉確實和cPGMA 反應而得到PGSA。利用EDS 與紫外光/可 見光光譜儀分析後得知PGSA 吸附金屬離子時同時具備螯合及離子交換的特性。 此外,藉由掃描式電子顯微鏡(SEM)的觀察得知PGSA 的粒徑介於250~350 μm 之 間,其形狀不規則且表面具有孔洞。利用PGSA 吸附單獨的Cu2+、Ag+ 與Cd2+ 時, 大約10 分鐘左右達飽和,最大吸附量為Ag+ [2.41 mmol/(g PGSA)] > Cu2+ [1.52 mmol/(g PGSA)] > Cd2+[1.21 mmol/(g PGSA)]。而PGSA 的吸附量也隨著金屬離子 初濃度的上升而增加,並於某一高濃度以上達最大值,其吸附行為都符合Langmuir 等溫吸附模式。當金屬離子溶液的pH 值由5(或6)降到3 時,吸附量只由最高值些 微下降2~10%;當溶液的pH 值小於3 時,吸附量則大幅下降且在pH 1 時失去對 Cu2+ 與Cd2+ 的吸附力,而對Ag+ 的吸附也只維持在0.63 mmol/(g PGSA)的最低 值。在競爭吸附方面,選擇適當的操作條件,PGSA 可從同濃度的Cu2+/Cd2+ 混合 液中分離出高濃度的Cu2+,而在同濃度的Ag+/Cu2+ 與 Ag+/Cd2+ 中則可分離出純的 Ag+,其選擇性尚佳。以0.5 M 的HNO3 溶液對吸附金屬離子的PGSA 進行5 次的 連續脫附/再吸附實驗後,發現PGSA 對Ag+ 的再吸附量只有初始值的49%,但對 Cu2+ 與Cd2+ 的再吸附量都達到98%,具備極佳的重複使用特性。所以本研究認為 PGSA 是一個成本不高但效能佳的螯合樹脂。
In this study, cross-linked poly(glycidyl methacrylate) (cPGMA) was prepared via a suspension polymerization. Then it reacted with sodium thioglycolate to form a chelate resin (PGSA) containing sodium thioglycolate groups in the side chain. The measurements of Fourier transform infrared spectrometer (FT-IR) and energy dispersive X-ray spectrometer (EDS) proved that PGSA was prepared successfully. Scanning electron microscope (SEM) images displayed that the shape of PGSA was irregular and the diameter of PGSA was 250-350 μm. The adsorptions of single-metal ions tended toward equilibrium at about 10 minutes, and the maximum adsorption capacities were Ag+ [2.41 mmol/(g PGSA)] > Cu2+ [1.52 mmol/(g PGSA)] > Cd2+ [1.21 mmol/(g PGSA)]. The adsorption capacities increased with increasing the initial concentration of metal ions, and reached maximum values at a high concentrations. The adsorption behavior was in accordance with the Langmuir isothermal adsorption mode. When the pH of Ag+, Cu2+ and Cd2+ solutions decreased from 5 (or 6) to 3, the adsorption capacities decreased slightly. When the pH of the solutions were less than 3, the adsorption capacities of metal ions decreased dramatically and approached to zero at pH 1 except Ag+. Controlling the optimum operation conditions, the competitive adsorption tests confirmed that PGSA had good adsorption selectivity for the recovery of Cu2+ from Cu2+/Cd2+ mixture or the recovery of Ag+ from Ag+/Cu2+ and Ag+/Cd2+ mixtures. After 5 cycles of desorption/re-adsorption experiments, the re-adsorption capacities of Ag+, Cu2+ and Cd2+ were 49%, 98% and 98% of initial values, respectively. PGSA was a good adsorbent for adsorbing Ag+, Cu2+ and Cd2+ from aqueous solutions.
摘要.......................................I
Abstract..................................II
誌謝.....................................III
目錄......................................IV
表目錄....................................VI
圖目錄...................................VII
第一章 緒論................................1
1-1 前言...................................1
1-2 處理水中重金屬離子之方法................2
1-3 螯合高分子.............................4
1-3-1 螯合高分子之簡介......................4
1-3-2 螯合高分子之分類......................5
1-3-3 螯合高分子之合成方式..................9
1-3-4 螯合高分子之應用.....................10
1-4 吸附理論...............................13
1-4-1 吸附類型.............................13
1-4-2 影響螯合樹脂吸附金屬離子的因素.........14
1-4-3 吸附模式.............................16
1-4-4 吸附動力學...........................17
1-5 研究動機...............................19
第二章 實驗內容............................21
2-1 實驗藥品...............................21
2-2 儀器設備...............................21
2-3 實驗步驟...............................23
2-3-1 螯合高分子PGSA 的製備................23
2-3-2 PGSA 的鑑定..........................25
2-3-3 PGSA 吸附單一金屬離子之研究...........26
2-3-4 PGSA 重複使用性能之研究..............27
2-3-5 競爭吸附.............................28
第三章 結果與討論..........................29
3-1 螯合樹脂PGSA的製備.....................29
3-2 螯合樹脂PGSA的分析.....................29
3-2-1 傅立葉轉換紅外線光譜儀(FT-IR)之分析...29
3-2-2 掃描式電子顯微鏡(SEM)對PGSA 表面的分析...........31
3-2-3 能量散射光譜儀(EDS)對吸附金屬離子前後的PGSA之分析................32
3-2-4 紫外光/可見光光譜儀對PGSA 吸附Cu2+的分析...........35
3-3 PGSA 吸附單一金屬離子之研究....................37
3-3-1 不同吸附時間對吸附量的影響...................37
3-3-2 不同初濃度的金屬離子對吸附量的影響...........41
3-3-3 不同金屬離子溶液的pH 值對吸附量的影響........44
3-4 PGSA 重複使用性能之研究......................45
3-5 競爭吸附.....................................47
第四章 結論......................................51
參考文獻.........................................52
[1] 行政院環保署,"安全飲用水手冊",第五版,第78-79 頁(2017)。
[2]S.-H.Park, S.S. Shin, C.H. Park, S. Jeon, J. Gwon, S.-Y. Lee, S.-J. Kim, H.-J. Kim, J.-H. Lee, "Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity", Journal of Hazardous Materials, 394,122512(2020).
[3]J. Zhao, C. Wang, S. Wang, Y. Zhou, B. Zhang, "Experimental and DFT studies on the selective adsorption of Pd(II) from wastewater by pyromellitic-functionalized poly(glycidyl methacrylate) microsphere", Journal of Molecular Liquids, 300, 112296(2020).
[4]T. Wang, Q. Wang, H. Soklun, Q. G. Qu, T. Xia, X. Guo, H. Jia, L. Zhu, "A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation", Chemical Engineering Journal, 370, 1298-1309(2019).
[5]X. Yi, Y. Qi, F. Li, J. Shu, Z. Sun, S. Sun, M. Chen, S. Pu, "Effect of electrolyte reuse on metal recovery from waste CPU slots by slurry electrolysis", Waste Management, 95, 370-376(2019).
[6]K. Kaur, R. Jindal, "Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents", Environmental Chemical Engineering, 7091-7101(2018).
[7]S. Amerkhanova, R. Shlyapov, A. Uali, "The active carbons modified by industrial wastes in process of sorption concentration of toxic organic compounds and heavymetals ions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 36-40(2017).
[8]D. Kolodynska, J. Krukowska, P. Thomas, "Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon", Chemical Engineering Journal, 307, 353-363(2017).
[9]R. Lv, Y. Hu, Z. Jia, R. Li, X. Zhang, J. Liu, C. Fan, J. Feng, L. Zhang, Z. Wang, "Removal of Fe3+ and Al3+ ions from phosphoric acid–nitric acid solutions with chelating resins", Hydrometallurgy, 188, 194-200(2019).
[10]L. Chaabane, E. Beyou, A.E. Ghali, M.H. Baouab, "Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents", Journal of Hazardous Materials, (2019).
[11]陳志彥,"具側鏈亞胺乙二酸高分子與金屬離子隻螯合性質的探討及其應用", 國立成功大學化學工程系博士論文(2002)。
[12]S. Zhang, Q. Shi, G. Korfiatis, C. Christodoulatos, H. Wang, X. Meng, "Chromate removal by electrospun PVA/PEI nanofibers: adsorption, reduction, and effects of co-existing ions", Chemical Engineering Journal, 387, 124179(2020).
[13]W. Wang, Z. Zhu, M. Zhang, S. Wang, C. Qu, "Synthesis of a novel magnetic
multi-amine decorated resin for the adsorption of tetracycline and copper", Journal of the Taiwan Institute of Chemical Engineers, 106, 130-137(2020).
[14]S. Yuan, P. Zhang, Z. Yang, L. Lv, S. Tang, B. Liang, "Successive Grafting of Polyhydroxyethyl methacrylate Brushes and Melamine onto Chitosan
Microspheres for Effective Cu(II) Uptake", International Journal of Biological
Macromolecules, 109, 287-302(2018).
[15]X. Qin, L. Bai, Y. Tan, L. Li, F. Song, Y. Wang, "β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: Fabrication, performance and mechanisms", Chemical Engineering Journal, 372, 1007-1018(2019).
[16]L. Zhang, S. Tang, F. He, Y. Liu, W. Mao, Y. Guan, "Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment", Chemical Engineering Journal, 378, 122215(2019).
[17]B. Zhao, H. Jiang, Z. Lin, S. Xu, J. Xie, A. Zhang, "Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions", Carbohydrate Polymers, 224, 115062(2019).
[18]S. Deng, G. Zhang, X. Wang, "Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu(II) and Hg(II)", Chemical Engineering Journal, 276, 349-357(2015).
[19]L. Zhijiang, L. Meng, X. Huining, H. Zhihong, "Novel Amino Acid Modified Cellulose for Copper(Ⅱ) Adsorption via Spectrophotometry", Imaging Science and Photochemistry, 35, 274-280(2017).
[20]B.M. Ibrahim, N.A. Fakhre, "Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater", International Journal of Biological Macromolecules, 123, 70-80(2019).
[21]M. Dardouri, F. Ammari, A.B. Amor, F. Meganem, "Adsorption of cadmium(II), zinc(II) and iron(III) from water by new crosslinked reusable polystyrene adsorbents", Materials Chemistry and Physics, 216, 435-445(2018).
[22]W. Zhang, L. Wu, X. Han, L. Yao, S. Zhao, J. Sun, Y. Xu, J. Li, C. Xiong, "Green chemical synthesis of new chelating fiber and its mechanism for recovery gold from aqueous solution", Journal of Hazardous Materials, 378, 120674(2019).
[23]S.M. Anush, B. Vishalakshi, "Modified chitosan gel incorporated with magnetic nanoparticle for removal of Cu(II) and Cr(VI) from aqueous solution", International Journal of Biological Macromolecules, 133, 1051-1062(2019).
[24]M.K. Erdoğan, "Preparation and stabilization of Ag nanoparticles with N-vinyl-2-pyrrolidone grafted-poly(vinyl alcohol) in an organic medium and investigation of their usability in the catalytic dye decolorization", Colloid and Interface Science Communications, 34, 100222(2020).
[25]W.-L. Xiong, J. Zhang, J.-X. Yu, R.-A. Chi, "Competitive adsorption behavior and mechanism for Pb2+ selective removal from aqueous solution on phosphoric acid modified sugarcane bagasse fixed-bed column", Process Safety and Environmental Protection, 124, 75-83(2019).
[26]C. Xiong, S. Wang, L. Zhang, "Selective recovery mechanism of Au(III) from an aqueous solution by trimethyl phosphate modified poly(glycidyl methacrylate)", Journal of the Taiwan Institute of Chemical Engineers, 95, 55-64(2019).
[27]C. Xiong, S. Wang, L. Zhang, Y. Li, Y. Zhou, J. Peng, "Selective recovery of silver from aqueous solutions by poly (glycidyl methacrylate) microsphere modified with trithiocyanuric acid", Journal of Molecular Liquids, 254, 340-348(2018).
[28]P. Zhang, Y. Niu, W. Qiao, Z. Xue, L. Bai, H. Chen, "Experimental and DFT investigation on the adsorption mechanism of silica gel supported sulfur-capped PAMAM dendrimers for Ag(I)", Journal of Molecular Liquids, 263, 390-398(2018).
[29]L. Zheng, Y. Yang, P. Meng, D. Peng, "Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis", Carbohydrate Polymers, 209, 38-50(2019).
[30]M.Z. Corazza, E.S. Ribeiro, M.G. Segatelli, C.R.T. Tarley, "Study of cross-linked poly(methacrylic acid) and polyvinylimidazole as selective adsorbents for on-line preconcentration and redox speciation of chromium with flame atomic absorption spectrometry determination", Microchemical Journal, 117, 18-26(2014).
[31]X. Yi, Z. Xu, Y. Liu, X. Guo, M. Ou, X. Xu, "Highly efficient removal of uranium(VI) from wastewater by polyacrylic acid hydrogels", Royal Society of Chemistry , 7, 6278–6287(2017).
[32]P. Liu, L. Jiang, L. Zhu, J. Guo, A. Wang, "Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions", Journal of Industrial and Engineering Chemistry, 23, 188-193(2015).
[33]W. Maatar, S. Boufi, "Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent", Carbohydrate Polymers, 126, 199-207(2015).
[34]P. Mohammadzadeh Pakdel, S.J. Peighambardoust, "A review on acrylic based hydrogels and their applications in wastewater treatment", Journal of Environmental Management, 217, 123-143(2018).
[35]Y. Sun, K.J. Shah, W. Sun, H. Zheng, "Performance evaluation of chitosan-based flocculants with good pH resistance and high heavy metals removal capacity", Separation and Purification Technology, 215, 208-216(2019).
[36]N.F. Yusof, F.S. Mehamod, F.B. Mohd Suah, "Fabrication and binding characterization of ion imprinted polymers for highly selective Co2+ ions in an aqueous medium", Journal of Environmental Chemical Engineering, 7, 103007(2019).
[37]J. Xu, L. Chen, T. Geng, M. Ren, S. Wang, Z. Song, F. Cao, "Spherical polymer brushes bearing imidazole groups as novel nickel remover for crude oil", Fuel, 226, 47-53(2018).
[38]M.F. Mohamed, H.A. Essawy, N.S. Ammar, H.S. Ibrahim, "Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent", International Journal of Biological Macromolecules, 94, 771-780(2017).
[39]E.S. Dragan, M.V. Dinu, "Advances in porous chitosan-based composite hydrogels: Synthesis and applications", Reactive and Functional Polymers, (2019).
[40]M.F. Hamza, Y. Wei, H.I. Mira, A.A.-H. Abdel-Rahman, E. Guibal, "Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetitechitosan for Ni(II) and Pb(II) recovery", Chemical Engineering Journal, 362, 310-324(2018).
[41]M.N. Islam, M.N. Khan, A.K. Mallik, M.M. Rahman, "Preparation of bio-inspired trimethoxysilyl group terminated poly(1-vinylimidazole)-modified-chitosan composite for adsorption of chromium (VI) ions", Journal of Hazardous Materials, 379, (2019).
[42]S.S. Islam, N. Salam, R.A. Molla, S. Riyajuddin, N. Yasmin, D. Das, K. Ghosh, S.M. Islam, "Zinc (II) incorporated porous organic polymeric material (POPs): A mild and efficient catalyst for synthesis of dicoumarols and carboxylative cyclization of propargyl alcohols and CO2 in ambient conditions", Molecular Catalysis, 477, 110541(2019).
[43]P. Paul, A. Ghosh, S. Chatterjee, A. Bera, S.M. Alam, S.M. Islam, "Development of a polymer embedded reusable heterogeneous oxovanadium (IV) catalyst for selective oxidation of aromatic alkanes and alkenes using green oxidant", Inorganica Chimica Acta, 492, 198-212(2019).
[44]F.U. Khan, Asimullah, S.B. Khan, T. Kamal, A.M. Asiri, I.U. Khan, K. Akhtar, "Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitrophenol", International Journal of Biological Macromolecules, 102, 868-877(2017).
[45]A.M. Al-Enizi, T. Ahamad, A.B. Al-hajji, J. Ahmed, A.A. Chaudhary, S.M. Alshehri, "Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens", International Journal of Biological Macromolecules, 109, 803-809(2018).
[46]K. Nešović, A. Janković, T. Radetić, M. Vukašinović-Sekulić, V. Kojić, L. Živković, A. Perić-Grujić, K.Y. Rhee, V. Mišković-Stanković, "Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study", European Polymer Journal, 121, 109257(2019).
[47]W.J. Lai, S.C. Lin, "Hydroxyethyl cellulose-grafted loofa sponge-based metal affinity adsorbents for protein purification and enzyme immobilization", Process Biochemistry, 74, 141-147(2018).
[48]C.L. Chiang, C.Y. Chen, L.W. Chang, "Purification of Recombinant Enhanced Green Fluorescent Protein Expressed in Escherichia coli with New Immobilized Metal Ion Affinity Magnetic Absorbents", Journal of Chromatography B, 864, 116-122(2008).
[49]B. Yuan, G. Luo, J. Liang, F. Cheng, W. Zhang, J. Chen, "Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery", Journal of Energy Chemistry, 38, 55-59(2019).
[50]K. Kimura, M. Yajima, Y. Tominaga, "A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature", Electrochemistry Communications, 66, 46-48(2016).
[51]O. Hosseinkhani, A. Kargari, H. Sanaeepur, "Facilitated transport of CO2 through Co(II)-S-EPDM ionomer membrane", Journal of Membrane Science, 459(1), 151-161(2014).
[52]J.W. Yoon, T.U. Yoon, E.J. Kim, A.R. Kim, T.S. Jung, S.S. Han, Y.S. Bae, "Highly selective adsorption of CO over CO2 in a Cu(I)-chelated porous organic polymer", Journal of Hazardous Materials, 341, 321-327(2018).
[53]Ira. N. Levine, "Physical Chemistry", 4th Ed.;New York: McGraw-Hill, Inc., 1995(Chapter 13).
[54]W. Xiong, J. Peng, Y. Hu, "Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite", Journal of Colloid and Interface Science, 368, 528-532(2012).
[55]S.M. El-Bahy, Z.M. El-Bahy, "Synthesis and characterization of poly amidoxime chelating resin for adsorption of Cu (II), Mn(II) and Ni(II) by batch and column study", Journal of Environmental Chemical Engineering, 4, 276-286(2016).
[56]M.A. Lashley, N. Mehio, J.W. Nugent, E. Holguin, C.L. Do-Thanh, V.S. Bryantsev, S. Dai, R.D. Hancock, "Amidoximes as Ligand Functionalities for Braided Polymeric Materials for the Recovery of Uranium from Seawater", Polyhedron, 109, 81-91(2016).
[57]Y.H. Teow, K.L. Ming, A.W. Mohammad, "Synthesis of cellulose hydrogel for copper (II) ions adsorption", Journal of Environmental Chemical Engineering, 6, 4588-4597(2018).
[58]L. Li, F. Liu, X. Jing, P. Ling, A. Li, "Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling", Water Research, 45, 1177-1188(2011).
[59]E. Pehlivan, T. Altun, "The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin", Journal of Hazardous Materials, 134, 149-156(2006).
[60]C.Y. Chen, M.S. Lin, K.R. Hsu, "Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups", Journal of Hazardous Materials, 152, 986-993(2008).
[61]C. Zhu, F. Liu, C. Xua, J. Gao, D. Chen, A. Li, "Enhanced removal of Cu(II) and Ni(II) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism", Journal of Hazardous Materials, 287, 234-242(2015).
[62]E.I. Unuabonah, M.O. Omorogie, N.A. Oladoja, "Composite Nanoadsorbents", Elsevier, Inc., 2019(Chapter 5).
[63]C. Y. Chen, C. L. Chiang, C.R. Chen, “Removal of heavy metal ions by a chelating resin containing glycine as chelating groups”, Separation and Purification Technology, 54, 396-403(2007).
[64]張詠承,"應用1,6-己二胺官能化之螯合樹脂回收水中重金屬離子之研究",南臺科技大學化學工程與材料工程系碩士論文(2019)。
[65]C.Y. Chen, C.Y. Chen, "Stability constants of polymer-bound iminodiacetate-type chelating agents with some transition-metal ions", Journal of Applied Polymer Science, 86, 1986-1994(2002).
[66]R. Chang, "Chemistry", 9th Ed.;New York: McGraw-Hill, Inc., page 327(2008).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔