跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳峻誠
研究生(外文):WU, JYUN-CHENG
論文名稱:以脈衝雷射剝蝕製備含磷與矽之 α-Ca2SiO4/CaO超晶格奈米顆粒:高溫相穩定及其光學性質研究
論文名稱(外文):Stabilization and Optical Properties of P-doped α-Ca2SiO4 & (Si, P)-doped CaO Nanoparticles with Incommensurate Superstructure by Pulsed Laser Ablation Condensation
指導教授:黃常寧
指導教授(外文):HUANG, CHANG-NING
口試委員:沈博彥林忠成
口試委員(外文):SHEN, POUYANLIN, CHUNG-CHERNG
口試日期:2020-07-17
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:122
中文關鍵詞:摻雜P的α-Ca2SiO4摻雜Si與P的CaO奈米顆粒超晶格晶向關係螢光
外文關鍵詞:(Si, P)-doped CaOP-doped α-Ca2SiO4pulse laser ablationincommensurate superstructurephotoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一章、前言
第二章、文獻回顧
2-1 矽酸鈣Ca2SiO4(C2S)之高壓研究
2-2 穩定高溫相矽酸鈣α-Ca2SiO4之研究
2-3 矽酸鈣Ca2SiO4(C2S)/氧化鈣CaO材料之工程應用
第三章、實驗內容
3-1 實驗藥品
3-2 實驗儀器
3-3 實驗流程
3-4 實驗步驟及方法
3-4-1 矽酸鈣製備
3-4-2 磷酸鈣製備
3-4-3 矽磷酸鈣Ca5(PO4)2SiO4以及矽酸鈣α-Ca2SiO4(C2S)/氧化鈣CaO奈米顆粒製備
3-4-4 X光繞射分析(XRD)
3-4-5 傅里葉轉換紅外光譜(ATR-FTIR)
3-4-6 微拉曼光譜(Micro-Raman Spectra)/微光致螢光光譜(Micro-Photoluminescence Spectra)
3-4-7 紫外光至可見光吸收光譜(UV-visible)
3-4-8 偏光顯微鏡(POM)
3-4-9 掃描式電子顯微鏡(SEM)
3-4-10 穿透式電子顯微鏡(TEM)
第四章、結果與討論
4-1 X光繞射分析(XRD)
4-2 矽酸鈣、磷酸鈣以及高溫相矽磷酸鈣之光譜分析
4-2-1 傅里葉轉換紅外光譜(ATR-FTIR)
4-2-2 微拉曼光譜儀(Micro-Raman Spectra)
4-2-3 微光致螢光光譜(Micro-Photoluminescence Spectra)
4-2-4 紫外光至可見光吸收光譜(UV-visible)
4-3 偏光顯微鏡(POM)
4-4 掃描式電子顯微鏡(SEM)
4-5 穿透式電子顯微鏡(TEM)
第五章、討論
5-1 雷射剝蝕能量對奈米顆粒相態、成分、溶解度與內應力之影響
5-2 含磷矽氧化鈣與含磷矽酸鈣奈米顆粒之生長機制、晶向關係與陽離子空缺效應
5-3 含磷矽氧化鈣與含磷矽酸鈣奈米顆粒之光學性質探討:偏光顯微鏡、拉曼光譜、紫外-可見光光譜、微光致螢光光譜
第六章、結論
第七章、參考文獻
1.Gard, J. A.; Taylor, H. F. W., Foshagite: composition, unit cell and dehydration. American Mineralogist 1958, 43 (1-2), 1-15.
2.Telschow, S.; Frandsen, F.; Theisen, K.; Dam-Johansen, K., Cement Formation—A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker. Industrial & Engineering Chemistry Research 2012, 51 (34), 10983-11004.
3.Sato, Y.; Kato, H.; Kobayashi, M.; Masaki, T.; Yoon, D. H.; Kakihana, M., Tailoring of deep‐red luminescence in Ca2SiO4: Eu2+. Angewandte Chemie International Edition 2014, 53 (30), 7756-7759.
4.Wang, M.; Lee, C.-G.; Ryu, C.-K., CO2 sorption and desorption efficiency of Ca2SiO4. International Journal of Hydrogen Energy 2008, 33 (21), 6368-6372.
5.Gou, Z.; Chang, J.; Zhai, W.; Wang, J., Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005, 73B (2), 244-251.
6.Shtepenko, O.; Hills, C.; Brough, A.; Thomas, M. J. C. E. J., The effect of carbon dioxide on β-dicalcium silicate and Portland cement. Chemical Engineering Journal 2006, 118 (1-2), 107-118.
7.Liu, X.; Tao, S.; Ding, C. J. B., Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 2002, 23 (3), 963-968.
8.Gou, Z.; Chang, J., Synthesis and in vitro bioactivity of dicalcium silicate powders. Journal of the European Ceramic Society 2004, 24 (1), 93-99.
9.Kim, J.; Jeon, P.; Choi, J.; Park, H., Emission color variation of M2SiO4: Eu2+ (M= Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Communications 2005, 133 (3), 187-190.
10.Kim, J. S.; Park, Y. H.; Kim, S. M.; Choi, J. C.; Park, H., Temperature-dependent emission spectra of M2SiO4: Eu2+ (M= Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid state communications 2005, 133 (7), 445-448.
11.Nakano, H.; Yokoyama, N.; Banno, H.; Fukuda, K., Enhancement of PL intensity and formation of core-shell structure in annealed Ca2-x/2 (Si1-xPx) O4: Eu2+ phosphor. Materials Research Bulletin 2016, 83, 502-506.
12.Mao, Z.; Lu, Z.; Chen, J.; Fahlman, B. D.; Wang, D., Tunable luminescent Eu2+-doped dicalcium silicate polymorphs regulated by crystal engineering. Journal of Materials Chemistry C 2015, 3 (36), 9454-9460.
13.Eysel, W.; Hahn, T., Polymorphism and solid solution of Ca2GeO4 and Ca2SiO4. Zeitschrift für Kristallographie-Crystalline Materials 1970, 131 (1-6), 322-341.
14.Suzuki, K.; Huruhashi, I.; Hukui, H., Study on the X-ray Characteristics of Ca2SiO4 with the Single Crystals Synthesized and Isolated from Portland Cement Clinker. Ceram. Assoc. Japan 1971, 79, 199-208.
15.Fukuda, K.; Maki, I.; Adachi, K., Structure change of Ca2SiO4 solid solutions with Ba concentration. Journal of the American Ceramic Society 1992, 75 (4), 884-888.
16.Klement, W.; Cohen, L. H., Determination of the β ↔ αL' transition in Ca2SiO4 to 7 kbar. Cement and Concrete Research 1974, 4 (6), 939-943.
17.Ringwood, A. E.; Reid, A. F., High pressure polymorphs of olivines: The K2NiF4 type. Earth and Planetary Science Letters 1968, 5, 67-70.
18.Liu, L.-G., Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature. Earth and Planetary Science Letters 1974, 24 (2), 224-228.
19.Zi, W.; Cui, T.; Yu, H.; Li, L.; Gan, S.; Xu, X., Synthesis and luminescence properties of a novel phosphor Ca2−x/2Si1−xPxO4:Eu2+ for near UV-excited white-light-emitting diodes. Journal of Rare Earths 2013, 31 (9), 871-877.
20.Fix, W.; Heymann, H.; Heinke, R., Subsolidus relations in the system 2CaO· SiO2‐3CaO· P2O5. Journal of the American Ceramic Society 1969, 52 (6), 346-347.
21.Fukuda, K.; Taguchi, H.; Fukuda, T., Effect of substituent ions on martensitic transformation temperatures in dicalcium silicate solid solutions. Journal of the American Ceramic Society 2002, 85 (7), 1804-1806.
22.Fukuda, K.; Maki, I.; Ito, S., Thermal Hysteresis for the α'L -to- β Transformations in Strontium Oxide-Doped Dicalcium Silicates. Journal of the American Ceramic Society 1996, 79 (11), 2969-2970.
23.Fukuda, K.; Iizuka, E.; Taguchi, H.; Ito, S., Effect of Crystal Grain Size and Thermal Stress on Martensitic Transformation of Phosphorus‐Bearing Dicalcium Silicates. Journal of the American Ceramic Society 1998, 81 (10), 2729-2731.
24.Fukuda, K., Phenomenological analysis of α'L -to-β martensitic transformation in phosphorus-bearing dicalcium silicate. Journal of materials research 1999, 14 (2), 460-464.
25.Fukuda, K., Redetermination of orientation of coherent interface boundaries between α and α'H-phases in dicalcium silicate. Cement and Concrete Research 1998, 28 (8), 1105-1108.
26.Chen, S.-Y.; Shen, P., Laser Ablation Condensation of a-PbO2-type TiO2. Physical Review Letters 2002, 89 (9), 096106.
27.Chen, S.-Y.; Shen, P., Laser Ablation Condensation and Transformation of Baddeleyite-Type Related TiO2. Japanese Journal of Applied Physics 2004, 43, 1519-1524.
28.Huang, C.-N.; Zheng, Y.; Chen, S.-Y.; Shen, P., Pulsed Laser Condensation of Dense Cubic ZnO with Unique Luminescence, Vibrations, and Interphase Interfaces. Crystal Growth & Design 2018, 18 (8), 4428-4437.
29.Chrisey, D. B.; Hubler, G. K., Pulsed Laser Depositionof Thin Films. Wiley, New York 1994.
30.Aïtcin, P.-C.; Flatt, R. J., Science and technology of concrete admixtures. Woodhead Publishing: 2015.
31.Singh, N. B., Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4). Progress in Crystal Growth and Characterization of Materials 2006, 52 (1), 77-83.
32.Rejmak, P.; Dolado, J. S.; Aranda, M. A. G.; Ayuela, A., First-Principles Calculations on Polymorphs of Dicalcium Silicate—Belite, a Main Component of Portland Cement. The Journal of Physical Chemistry C 2019, 123 (11), 6768-6777.
33.Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014, 39, 426-443.
34.Ni, F.; Caram, H., Sorption Enhanced Reaction for High Purity Products in Reversible Reactions. AIChE Journal 2017, 63.
35.Ida, J.; Lin, Y. S., Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental science & technology 2003, 37 (9), 1999-2004.
36.Kumar, S.; Saxena, S. K., A comparative study of CO2 sorption properties for different oxides. Materials for Renewable and Sustainable Energy 2014, 3 (3), 30.
37.Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O'Hare, D.; Zhong, Z., Recent advances in solid sorbents for CO2 capture and new development trends. Energy & Environmental Science 2014, 7 (11), 3478-3518.
38.Chen, M.; Zhiguo, X.; Molokeev, M.; Liu, Q., Structural Phase Transformation and Luminescent Properties of Ca2-xSrxSiO4:Ce(3+) Orthosilicate Phosphors. Inorganic chemistry 2015, 54.
39.Jillavenkatesa, A.; Condrate, R. A., The Infrared and Raman Spectra of β-and α-Tricalcium Phosphate (Ca3(PO4)2). Spectroscopy Letters 1998, 31 (8), 1619-1634.
40.Handke, M.; Sitarz, M.; Magdalena, R.; Galuskin, E., Vibrational Spectra of Phosphate–Silicate Biomaterials. Journal of Molecular Structure 2003, 651, 39-54.
41.Puertas, F.; Triviño, F., Examinations by infra-red spectroscopy for the polymorphs of dicalcium silicate. Cement and Concrete Research 1985, 15 (1), 127-133.
42.Zhang, Y.; Yin, G.; Zhu, S.; Zhou, D.; Wang, Y.; Li, Y.; Luo, L., Preparation of β-Ca3(PO4)2 bioceramic powder from calcium carbonate and phosphoric acid. Current Applied Physics 2005, 5 (5), 531-534.
43.Biswas, R. K.; Khan, P.; Mukherjee, S.; Mukhopadhyay, A. K.; Ghosh, J.; Muraleedharan, K., Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. Journal of Non-Crystalline Solids 2018, 488, 1-9.
44.Qin, G. G.; Liu, X. S.; Ma, S. Y.; Lin, J.; Yao, G. Q.; Lin, X. Y.; Lin, K. X., Photoluminescence mechanism for blue-light-emitting porous silicon. Physical Review B 1997, 55 (19), 12876-12879.
45.Chen, J.; Yang, Y.; Xu, J.; Mao, Z.; Wang, D.; Bie, L.; Fahlman, B. D., High-temperature crystalline α'H- and α-Ca2SiO4:Eu2+ phosphors stabilized at room temperature by incorporating phosphorus ions. RSC Advances 2016, 6 (87), 83776-83782.
46.Serena, S.; Caballero, A.; De Aza, P.; Sainz, M., New evaluation of the in vitro response of silicocarnotite monophasic material. Ceramics International 2015, 41 (8), 9411-9419.
47.Hu, J.; Agrawal, D. K.; Roy, R., Investigation of hydration phases in the system CaO-SiO2-P2O5-H2O. Journal of Materials Research 1988, 3 (4), 772-780.
48.Vanis, P.; Odler, I., Hydration Reactions in the System CaO-P2O5-SiO2-(H2O). Journal of the American Ceramic Society 1996, 79 (4), 1124-1126.
49.Barnes, M. W.; Klimkiewicz, M.; Brown, P. W., Hydration in the System Ca2SiO4–Ca3(PO4)2 at 90°C. Journal of the American Ceramic Society 1992, 75 (6), 1423-1429.
50.Gomes, S.; Nedelec, J.-M.; Jallot, E.; Sheptyakov, D.; Renaudin, G., Silicon Location in Silicate-Substituted Calcium Phosphate Ceramics Determined by Neutron Diffraction. Crystal Growth & Design 2011, 11 (9), 4017-4026.
51.Huang, C. N.; Chen, S. Y.; Shen, P., Condensation and Decomposition of NiO-Dissolved Rutile Nanospheres. The Journal of Physical Chemistry C 2007, 111 (8), 3322-3327.
52.Bliem, R.; McDermott, E.; Ferstl, P.; Setvin, M.; Gamba, O.; Pavelec, J.; Schneider, M. A.; Schmid, M.; Diebold, U.; Blaha, P.; Hammer, L.; Parkinson, G. S., Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 2014, 346 (6214), 1215.
53.Zhang, J.; Wu, X.; Cheong, W.-C.; Chen, W.; Lin, R. Li, J.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)X catalyst for diboration of alkynes and alkenes. Nature Communications 2018, 9 (1), 1002.
54.Aseel, M.; Itab, F.; Ahmed, F. In Producing high purity of metal oxide nano structural using simple chemical method, IOP Conf. Series: journal of physics: Conf. Series, 2018; p 012036.
55.Venkataravanappa, M.; Nagabhushana, H.; Basavaraj, R.; Venkatachalaiah, K.; Prasad, B. D. In Color tuning in neodymium doped dicalcium silicate nanostructures prepared via ultrasound method, AIP Conference Proceedings, AIP Publishing LLC: 2017; p 050114.
56.Venkataravanappa, M.; Venkatachalaiah, K.; Basavaraj, R.; Prasanna Kumar, J.; Daruka Prasad, B.; Nagabhushana, H. J. I.; Chemistry, N.-M., Photoluminescence properties of Dy3+ activated Ca2SiO4 nanophosphor for WLED applications. Inorganic and Nano-Metal Chemistry 2018, 48 (2), 107-109.
57.Jang, H. S.; Kim, H. Y.; Kim, Y.-S.; Lee, H. M.; Jeon, D. Y., Yellow-emitting γ-Ca2SiO4:Ce3+, Li+ phosphor for solid-state lighting: luminescent properties, electronic structure, and white light-emitting diode application. Opt. Express 2012, 20 (3), 2761-2771.
58.Mani, R.; Gupta, S. K., Effect of hydrothermal temperature treatment on the variance of fluorescence in Ca2SiO4:Tb3+. Journal of Science: Advanced Materials and Devices 2020.
59.Devi, L. L.; Basavapoornima, C.; Venkatramu, V.; Jayasankar, C. K.; Kaewkhao, J.; Lertlop, W., Structural and luminescence properties of Sm3+-doped Ca2SiO4 phosphors from agricultural waste. Materials Today: Proceedings 2018, 5 (7, Part 1), 15081-15085.
60.Choi, S. W.; Hong, S. H.; Kim, Y. J., Characterization of Ca2SiO4: Eu2+ phosphors synthesized by polymeric precursor process. Journal of the American Ceramic Society 2009, 92 (9), 2025-2028.
61.Yu, Q.; Liu, Y.; Wu, S.; Lu, X.; Huang, X.; Li, X., Luminescent properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes. Journal of Rare Earths 2008, 26 (6), 783-786.
62.Nakano, H.; Ando, S.; Kamimoto, K.; Hiramatsu, Y.; Michiue, Y.; Hirosaki, N.; Fukuda, K., Incommensurately Modulated Crystal Structure and Photoluminescence Properties of Eu2O3-and P2O5-Doped Ca2SiO4 Phosphor. Journals of Materials 2020, 13 (1), 58.
63.Sharma, J. C.; Suresh, K.; Gandhi, Y.; Murthy, K., Synthesis and Photoluminescence Studies of Rare Earth Doped [1.5%] CaO. i-manager's Journal on Material Science 2019, 7 (3), 37.
64.Deng, J.; Zhang, H.; Zhang, X.; Molokeev, M. S.; Qiu, J.; Liu, Y.; Lei, B.; Ma, L.; Wang, X., Enhanced luminescence performance of CaO: Ce3+, Li+, F− phosphor and its phosphor-in-glass based high-power warm LED properties. Journal of Materials Chemistry C 2018, 6 (15), 4077-4086.
65.Mohammed, A.; Jafer, R.; Som, S.; Swart, H., Luminescence properties of CaO:Bi3+ phosphor. 2016.
66.Yamamoto, T.; Iitaka, T.; Morishita, R.; Ebisuzaki, T., First principle calculations of materials deep inside the earth. RIKEN Rev. 2000, 29.
67.Serena, S.; Sainz, M. A.; Caballero, A., Single-phase silicocarnotite synthesis in the subsystem Ca3(PO4)2–Ca2SiO4. Ceramics International 2014, 40 (6), 8245-8252.
68.Jantzen, T.; Yazhenskikh, E.; Hack, K.; Müller, M. J. C., Thermodynamic assessment of the CaO–P2O5–SiO2–ZnO system with special emphasis on the addition of ZnO to the Ca2SiO4–Ca3P2O8 phase. Journal of Calphad 2019, 67, 101668.

電子全文 電子全文(網際網路公開日期:20250807)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top