跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/17 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳皇名
研究生(外文):Chen, Huang-Ming
論文名稱:利用二次鍵結技術置換不同熱導率基板對砷化鎵系列面射型雷射影響之研究
論文名稱(外文):The investigation of GaAs-based vertical-cavity surface-emitting laser with different thermal conductivity substrates replaced by secondary bonding technology
指導教授:邱裕中王俊凱王俊凱引用關係
指導教授(外文):CHIOU, YU-ZUNGWANG, CHUN-KAI
口試委員:邱裕中顏偉昱許正良
口試委員(外文):CHIOU, YU-ZUNGYAN, WEI-YUHSU, CHENG-LIANG
口試日期:2020-07-15
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:82
中文關鍵詞:垂直共振腔面射型雷射金屬晶圓鍵結砷化鎵系列散熱
外文關鍵詞:Vertical-Cavity Surface-Emitting LASERS(VCSEL)Metal BondingGaAs seriesheat sink
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
ABSTRACT
誌謝
目次
圖目錄
第一章 序論
1.1 垂直共振腔面射型雷射背景介紹
1.2 研究動機
1.3 整體架構
參考文獻
第二章
垂直共振腔面射型雷射基礎理論
2.1 砷化鎵材料特性
2.2 垂直共振腔面射型雷射基本原理
2.2.1 光的來源
2.2.2 居量反轉(Population Inversion )
2.2.4 分布式布拉格反射器(DBR)
2.2.5 氧化孔徑
參考文獻
第三章 垂直共振腔面射型雷射元件製作
3.1 磊晶結構
3.1.1 金屬有機化學氣相沉積
3.2 置換基板之設計
3.2.1 晶圓鍵合(Wafer Bonding)
3.2.2 暫時性基板
3-2-3 永久性基板
3-3 元件製程步驟
3-3-1 P 極金屬層沉積(P-metal Deposition)
3-3-2 高臺圖形定義(MESA)
3-3-3 高溫濕氧退火(Oxidation)
3-3-4 兩次基板之置換
3-3-5 P 型電極的製作
3-3-6 基板減薄及背金沉積
3-3-7 晶圓切割及量測
參考資料
第四章 垂直共振腔面射型雷射光電特性分析
4.1 電特性分析
4.1.1 順向電壓-電流特性分析
4.1.2 逆向電壓-電流特性與崩潰電壓分析
4.2 光特性分析
4.2.1 電流-光輸出功率特性分析
4.2.2 電流-功率轉換效率特性分析
4.2.3 分光頻譜
4.2.4 熱影像量測分析
4.2.5 熱耗散分析
參考資料
第五章 環境溫度變化對實驗元件之影響
5.1 變溫波長分析
5.2 變溫 Ith 分析
5.3 變溫功率分析
5.4 高溫高電流壽命測試
參考文獻
第六章 結論與展望
6.1 結論
6.2 未來展望
[1]K. IGA, LABORATORY NOTEBOOK (MARCH 22, 1977).
[2]Soda H., Iga K., Kitahara C., Suematsu Y., GAINASP-INP SURFACE EMITTING INJECTION-LASERS, Jpn. J. Appl. Phys., 18, 2329-330, 1979.
[3]Ogura M., Hsin W., Wu MC., Wang S., Whinnery JR., Wang SC., Yang JJ., SURFACE-EMITTING LASER DIODE WITH VERTICAL GAAS GAALAS QUARTER-WAVELENGTH MULTILAYERS AND LATERAL BURIED HETEROSTRUCTURE, Appl. Phys. Lett., 51, 1655-1657, 1987.
[4]Koyama F., Kinoshita S., Iga K., ROOM-TEMPERATURE CONTINUOUS WAVE LASING CHARACTERISTICS OF GAAS VERTICAL CAVITY SURFACE-EMITTING LASER, Appl, Phys. Lett., 55, 221-222, 1989.
[5]Jewell J. L., McCall S. L., Scherer A., Houh H. H., Whitaker N. A., Gossard A. C., English J. H., Transverse modes, waveguide dispersion and 30-ps recovery in submicron GaAs/AlAs microresonators, Appl. Phys. Lett., 55, 22-24, 1989.
[6]Miyamoto T., Uchida T., Yokouchi N., Inaba Y., Koyama F. Iga K., “A study on
gain-resonance matching of CBE grown l = 1:5 um surface emitting lasers,
IEEE/LEOS Annu., 542, 1992.
[7]BaBa T., Yogo Y., Suzuki K., Koyama F. Iga K., Near room temperaturecontinuous wave lasing characteristics of GaInAsP/InP surfaceemitting laser, Electron. Lett., 29(10), 913-914, 1993.
[8]Geels R., Coldren L. A., Narrow-linewidth, low threshold verticalcavity
surface-emitting lasers, 12th IEEE Int. Semiconductor Laser Conf., B-1, 16-17,
1990.
[9]Wipiejewski T., Panzlaf K., Zeeb E., Ebeling K. J. Submilliamp vertical cavity laser diode structure with 2.2-nm continuous tuning, 18th European Conf Opt. Comm., 92, 1992
[10]Lee Y. H., Tell B., Brown-Goebeler K. F., Libenguth R. E., Mattera V. D., Deep-red continuous wave top-surface-emitting vertical cavity AlGaAs superlattice lasers, IEEE Photon. Technol. Lett., 3(2), 108-109, 1991.
[11]Babic D. I., Streubel K., Mirin R. P., Pirek J., Marglit N. M., Bowers J.E., Hu E. L., Mars D. E., Yang L., Carey K., Room temperature performance of double-fused 1.54 um vertical-cavity lasers, IPRM 96, 1996.
[12]Huffaker D. L., Deppe D.G., Kumar K., Rogers T.J., Native-Oxide Defined
Ring Contact for Low-Threshold Vertical-cavity LASERs, APPLIED PHYSICS
LETTERS, 65, 97-99, 1944.
[13]Michalzik, VCSELs, Fundamentals, Technology and Applications of
Vertical-Cavity Surface-Emitting Lasers, 27-30, 2013.
[14]Haglund A., Hashemi E., Bengtsson J., Gustavsson J., Stattin M., Calciati M., Goano M., Progress and challenges in electrically pumped GaN-based VCSELs, Proc. SPIE, 9892, 98920Y, 2016.
[15]Qi Y. X., Li W. Liu S.P., Ma X. Y., Optimized arrangement of vertical cavity surface emitting laser arrays to improve thermal characteristics, JOURNAL OF APPLIED PHYSICS, 126, 2019.
[16]Piperk J., Akulova Y. A., Babic D. I., Coldren L. A., Bowers J. E., Minimum
temperature sensitivity of 1.55 μm vertical-cavity lasers at -30 nm gain offset, Appl. Phys. Lett, 72, 1814, 1998.
[17]Baveja P. P., Kogel B., Westbergh P., Gustavsson J. S., Haglund A., Maywar D. N., Agrawal G. P., Larsson A., Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling, OPTICS EXPRESS, 19, 15490-15505, 2011.
[18]Nakwaski W., Osinski M., THERMAL-PROPERTIES OF ETCHED-WELL SURFACE-EMITTING SEMICONDUCTOR-LASERS, IEEE JOURNAL OF QUANTUM ELECTRONICS, 27, 1391-1401, 1991.
[19]Zhang X. W., Liu B. Y., Shi K., Han F., Chen H. C., Nie L., Yu X., A thermal analysis of stable-polarization VCSELs, OPTIK, 157, 203-207, 2018.
[20]Wang J.H., Savidis I., Fridman E. G., Thermal analysis of oxide-confined VCSEL arrays, MICROELECTRONICS JOURNAL, 42, 820-825, 2011.
[21]As’adi M. J., Abbasian K., Bostanabad D. A., Nurmohammadi T., Thermal analysis of high-index-contrast grating (HCG)-based VCSEL, OPTIK, 125, 4017-4022, 2014.
[22]Al-Omari A. N., Alias M. S., Ababneh A., Lear K. L., Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm VCSELs with copper-plated heat sinks, JOURNAL OF PHYSICS D-APPLIED PHYSICS, 45, 505101, 2012.
[23]Mena P. V., Morikuni J. J., Kang S. M., Harton A. V., Wyatt K. W., A simplerate-equation-based thermal VCSEL model, JOURNAL OF LIGHTWAVE TECHNOLOGY, 17, 865-872, 1999.
[24]Xinzhi S., Chang Q., Gaofeng W., Jicheng H., Rate-equation-based VCSEL model and simulation, 11th IEEE Int. Conf. on Computer-Aided Design and Computer Graphics, 9, 503-507, 2009.
[25]Bjorlin E. S., Geske J., Mehta M., Piprek j., Bowers J. E., IEEE PHOTONICS
TECHNOLOGY LETTERS, 17, 944-946, 2005.
[26]Liu Y. Y., Huang Y. W., Zhong C. Y., Zhang X., Zhang J. W., Hofmann E. E.,
Ning, Y. Q., Wang L. J., VCSEL array thermal-distribution optimized by mesas
rearrangement, OPTIK, 186, 443-448, 2019.
[27]Zhong C. Y., Zhang X., Liu D., Ning Y. Q., Wang L. J., Enhanced thermal
stability of VCSEL array by thermoelectric analysis-based optimization of
mesas distribution, CHINESE PHYSICS B, 26, 2017.
[28]Sze S. M., Selected solutions for semiconductor devices: physics and technology, 1985.
[29]Schlesinger T. E., Encyclopedia of Materials: Science and Technology, 2nd Edition, 3431-3435, 2001.
[30]Dr. Philip Moser, Energy-Efficient VCSELs for Optical Interconnects, 2006.
[31]Sze S. M., Physics of Semiconductor Devices, 3rd Edition, 2006.
[32]Michalzik R., Ebeling K. J., Operating Principles of VCSELs, 53-98, 2003.
[33]Sheppard C. J. R., Approximate calculation of the reflection coefficient from a stratified medium, Pure and Applied Optics: Journal of the European Optical Society Part A, 4(5), 665-669, 1995.
[34]Choquette K. D., Schneider R. P., Lear K. L., Geib K. M.,
LOW-THRESHOLD VOLTAGE VERTICAL-CAVITY LASERS FABRICATED BY SELECTIVE OXIDATION, ELECTRONICS LETTERS, 30, 2043-2044, 1994.
[35]Lear K. L., Choquette K. D., Schneider R. P., Kilcoyne S. P., Geib K. M.,
SELECTIVELY OXIDIZED VERTICAL-CAVITY SURFACE-EMITTING LASERS WITH 50-PERCENT POWER CONVERSION EFFICIENCY, ELECTRONICS LETTERS, 31, 208-209, 1995.
[36]Kish F. A., Steranka F. M., Defevere D. C., Vanderwater D. A., Park K. G.,
Kuo C. P., Osentowski, T. D., Peanasky M. J., Yu J. G., Fletcher R. M., Steigerwald D. A., Craford M. G., Robbins V. M., VERY HIGH-EFFICIENCY
SEMICONDUCTOR WAFER-BONDED TRANSPARENT-SUBSTRATE (ALXGA1-X)0.5IN0.5P/GAP LIGHT-EMITTING-DIODES, APPLIED PHYSICS LETTERS, 64, 2839-2841, 1994.
[37]Shi F., Chen H., MacLaren S., Wafer-bonded semiconductors using In/Sn and Cu/Ti metallic interlayers, APPLIED PHYSICS LETTERS, 84, 3504-3506, 2004.
[38]Wuu D. S., Hsu S. C., Huang S. H., Horng R. H., Vertical-conducting p-side-up GaN/mirror/Si light-emitting diodes by laser lift-off and wafer-transfer techniques, PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 201, 2699-2703, 2004.
[39]Williams R. E., Gallium Arsenide Processing Techniques; Artech House, Inc.: Dedham, MA, 1984.
[40]Kelly J. J., Vandenmeerakker JEAM., Notten PHL., Tijbufg R. P., WET-CHEMICAL ETCHING OF III-V SEMICONDUCTORS, PHILIPS TECHNICAL REVIEW, 44, 61-74, 1988.
[41]Kelly J. J., Reyners A. C., A STUDY OF GAAS ETCHING IN ALKALINE H2O2 SOLUTIONS, APPLIED SURFACE SCIENCE, 29, 149-164, 1987.
[42]Kelly M. K., Ambacher O., Dahlheimer B., Groos G., Dimitrov R., Angerer H., Stutzmann M., Optical patterning of GaN films, APPLIED PHYSICS LETTERS, 69, 1749-1751, 1996.
[43]Wong W. S., Sands T., Cheung N.W., Damage-free separation of GaN thin films from sapphire substrates, APPLIED PHYSICS LETTERS, 72, 599-601, 1998.
[44]施敏、李明達,半導體元件物理與製作技術-第三版,國立交通大學出版社, 民 102 年
[45]Baveja P. P., Kogel B., Westbergh P., Gustavsson J. S., Haglund A., Maywar D.N., Agrawal G. P., Larsson A., Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling, OPTICS EXPRESS, 19, 15490-15505, 2011.
[46]Debernardi P., Kroner A., Rinaldi F., Michalzik R., Surface Relief Versus
Standard VCSELs: A Comparison Between Experimental and Hot-Cavity Model Results, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 15, 828-837, 2009.
[47]Wilmsemn C., Temkin H., Coldren L., Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, Cambridge Univ. Press, 1999.
[48]Ashraful A., Nusrat T., ASM Shamsul A., Shahana A., Influence of
Temperature on Steady-State Performance of VCSEL, International Journal of
Scientific Engineering and Applied Science (IJSEAS), 1, 2015
[49]Qian Y., Zhu Z. H., Lo Y. H., Huffaker D. L., Deppe D. G., Hou H. Q.,
Hammons B. F., Lin W., Tu K., Submilliamp 1.3 μm vertical cavity surface
emitting lasers with threshold current density of<5004A/cm2, Electron. Lett.,
33(12), 1052-1053, 1997.
[50]Chang Y. A., Chen J. R., Kuo H. C., Kuo Y. K., Wang S. C., Theoretical and
experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers, J. Lightwave Technol, 24, 536–543, 2006.
[51]Vurgaftman I., Meyer J. R., Ram-Mohan L. R., Band parameters for III-V
compound semiconductors and their alloys, Appl. Phys. Rev, 89, 5815–5875,
2001.
[52]Marek O., Wlodzimerz N., Thermal Effects in vertical- cavity surface-emitting LASERS, International Journal of High Speed Electronics and Systems, 5(4), 667-730, 1994.
[53]Tell B., Browngoebeler K. F., Leibenguth R. E., Baez F. M., Lee Y. H., TEMPERATURE-DEPENDENCE OF GAAS-ALGAAS VERTICAL CAVITY SURFACE EMITTING LASERS, APPLIED PHYSICS LETTERS, 60, 683-685, 1992.
電子全文 電子全文(網際網路公開日期:20250810)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top