(3.239.192.241) 您好!臺灣時間:2021/03/02 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐柏岐
研究生(外文):OU, PO-CHI
論文名稱:輔以主動傳輸電力調節技術之同軸對臥感應電能轉換系統設計分析
論文名稱(外文):Design and Analysis of Coaxial Inductive Power Transfer System with Active Transmitting Power Regulation Technique
指導教授:李宗勳李宗勳引用關係
指導教授(外文):Tsong-Shing Lee
口試委員:黃世杰戴政祺
口試委員(外文):Shyh-Jier HuangCheng-Chi Tai
口試日期:2020-07-02
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:無線功率傳輸主動式傳輸電力調節
外文關鍵詞:Wireless power transferActive Transmitting Power Regulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出了新型無線功率傳輸之架構,該技術使用諧振頻率調變,來實現主動式傳輸電力調節,改變線圈電壓供給,以給付不同情況下之負載,來達成無線功率傳輸。
本研究對於現階段無線感應充電進行分析,分析以不同厚度及形狀大小之導磁材料,再予以位置變化來探討整體磁場及傳輸效能之變化,透過設計變量,以此研究、分析各種情況之變化,並得出各種情況合適之應用。
運用現今已漸趨成熟之無線傳輸系統技術,通過內文完整諧振及轉換分析,選用多對一線圈架構進行耦合傳輸,以此達到同軸對臥感應線圈實現方法與耦合傳輸分析,此設計可於多組傳輸線圈進行感應電能轉換並同步予以接收端線圈,提高功率傳輸之效能,再經由整流輸出直流供給負載穩定電源。
本研究經由實作測試,並輔以模擬軟體分析佐證其結果,其成果確實與分析之內容無誤,得此研究供給之非接觸式之功率傳輸,在未來應用上,除了減少電線使用利於環境,更可避免傳統電力導引線造成人員觸電危險、設備真空艙體限制與達到電器隔離效益,此研究概念亦有助益電漿電源系統充電。
This study proposes a new architecture for wireless power transmission. This technology uses resonant frequency modulation to achieve active transmission power regulation and changes the coil voltage supply to pay for loads in different situations to achieve wireless power transmission.
This study analyzes the current stage of wireless induction charging, analyzes the magnetic permeability materials with different thicknesses and shapes, and then changes the position to discuss the changes in the overall magnetic field and transmission performance. Through design variables, we can study and analyze the changes in various situations , And draw suitable applications in various situations.
Using the increasingly mature wireless transmission system technology, through the complete resonance and conversion analysis of the text, the multi-to-one coil architecture is used for coupling transmission, so as to achieve the realization method and coupling transmission analysis of the coaxial counter-coil induction coil. This design can be used in Multiple sets of transmission coils perform inductive energy conversion and synchronize the receiving coils to improve the efficiency of power transmission, and then supply the load with a stable power supply through rectified output DC.
This research is supported by actual tests and is supplemented by simulation software analysis. The results are indeed correct with the content of the analysis. The non-contact power transmission provided by this research will be applied in the future. In addition to reducing the use of wires, it will benefit the environment. It can also avoid the risk of electric shock caused by the traditional power guide wire, the limitation of the equipment vacuum cabin and the benefit of electrical isolation. This research concept also helps to charge the plasma power system.
摘要 iii
誌謝 vi
目次 vii
表目錄 ix
圖目錄 x
第一章 介紹 1
1.1 研究環境與動機 1
1.2 研究目的與做法 3
1.3 內容大綱 4
第二章 主動式傳輸電力調節分析 5
2.1 前言 5
2.2 換流器篩選 7
2.2.1 半橋換流器 7
2.2.2 全橋換流器 8
2.3 感應電能轉換系統之等效電路拓樸 9
2.4 電路諧振補償特性之分析 12
2.4.1 SS諧振補償特性之分析 13
2.4.2 諧振槽特性之分析 19
2.5 整流濾波電路特性之分析 21
2.6 磁場模擬之分析 22
第三章 系統設計 25
3.1 前言 25
3.2 主動式傳輸電力調節之主電路設計 26
3.2.1 全橋換流器 26
3.2.2 MOSFET開關驅動電路 27
3.2.3 感應傳輸線圈設計及補償電路相關參數 29
3.3 主動式傳輸電力調節之方法 37
3.3.1 輸入阻抗相位變化 38
3.3.2 電壓轉換增益曲線 40
3.3.3 電流特性曲線 43
3.4 主動式傳輸電力調節系統實體圖 46
3.5 導磁材料選用與比較 48
第四章 實驗結果 50
4.1 概述 50
4.2 全橋換流器輸出實測 51
4.3 功率晶體開關零電壓切換功能測試 55
4.4 實測主動式傳輸電力調節技術電路之波形 58
4.4.1 實測傳輸端諧振電路波形 58
4.4.2 實測接收端諧振電路波形 62
4.4.3 實測諧振電路輸出特性 65
4.5 系統輸出功率及整體轉換效率測試 67
4.6 實測替換導磁材料時之輸出 72
第五章 結論及未來發展與方向 84
5.1 結論 84
5.2 未來發展與方向 85
參考文獻 86
[1]N. Tesla, “System of Transmission of Electrical Energy,” U.S. Patent 0645 576, Mar. 20, 1900.
[2]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, pp. 21–27, Jan. 2000.
[3]H. Shoki, “Issues and initiatives for practical use of wireless power transmission technologies in Japan,” Proc. IEEE MTT-S IMWS Power Transmiss., Technol., Syst. Appl., 2011, pp. 87–90.
[4]A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Sci. Expr., vol. 317, pp. 83–86, Jul. 2007.
[5]D. Patil, M. Mcdonough, J. Miller, B. Fahimi, and P. T. Balsara, “Wireless power transfer for vehicular applications: Overview and challenges,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 3–37, Mar. 2018.
[6]X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless Charging Technologies: Fundamentals, Standards, and Network Applications," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1413-1452, Secondquarter 2016.
[7]M. Mahdavifard, A. Poorfakhraei and F. Tahami, "A battery charging compatible profile for wireless power transfer," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 5295-5300.
[8]Chang-Gyun Kim, Dong-Hyun Seo, Jung-Sik You, Jong-Hu Park and B. H. Cho, "Design of a contactless battery charger for cellular phone," IEEE Transactions on Industrial Electronics, vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[9]W. X. Zhong, X. Liu and S. Y. R. Hui, "A Novel Single-Layer Winding Array and Receiver Coil Structure for Contactless Battery Charging Systems With Free-Positioning and Localized Charging Features," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4136-4144, Sept. 2011.
[10]G. L. Cote, R. M. Lec, and M. V. Pishko, “Emerging biomedical sensing technologies and their applications,” IEEE Sensors J., vol. 3, no. 3, pp. 251–266, Jun. 2003.
[11]D. Ha, T.-C. Lee, D. J.Webery, and W. J. Chappell, “Power distribution to multiple implanted sensor devices using a multiport bandpass filter (BPF) approach,” Proc. IEEE MTT-S IMS, 2014, pp. 1–4.
[12]G. Yan, D. Ye, P. Zan, K. Wang, and G. Ma, “Micro-robot for endoscope based on wireless power transfer,” Proc. Int. Conf. Mechatronics Automation, Aug. 5–8, 2007, pp. 3577–3581.
[13]Y. Zhao, M. Nandra, C.-C. Yu, and Y.-C. Tai, “High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis,” Proc. IEEE EMBS, 2012, pp. 6583–6586.
[14]K. Na, H. Jang, S. K. Oruganti and F. Bien, "An improved wireless power transfer system with adaptive technique for Implantable Biomedical Devices," 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Singapore, 2013, pp. 1-3.
[15]T. Imura, T. Uchida, and Y. Hori, “Flexibility of contactless power transfer using magnetic resonance coupling to air gap and misalignment for EV,” World Elect. Veh. J., vol. 3, no. 2009, pp. 24–34, 2009.
[16]Y. Chen, H. Zhang, S. Park and D. Kim, "A Switching Hybrid LCC-S Compensation Topology for Constant Current/Voltage EV Wireless Charging," IEEE Access, vol. 7, pp. 133924-133935, 2019.
[17]M. Khalilian and P. Guglielmi, "Primary-Side Control of a Wireless Power Transfer System with Double-Sided LCC Compensation Topology for Electric Vehicle Battery Charging," 2018 IEEE International Telecommunications Energy Conference (INTELEC), Turin, 2018, pp. 1-6.
[18]Y. Lu, K. W. E. Cheng, Y. L. Kwok, K. W. Kwok, K. W. Chan, and N. C. Cheung, “Gapped air-cored power converter for intelligent clothing power transfer,” Proc. 7th Int. Conf. Power Electron. Drive Syst., Nov. 27–30, 2007, pp. 1578–1584.
[19]X. Liu, W. Ng, C. Lee, and S. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” Proc IEEE Appl. Power Electron. Conf. Expo., 2008, pp. 645–650.
[20]S. Moon, B. Kim, S. Cho, C. Ahn and G. Moon, "Analysis and Design of a Wireless Power Transfer System With an Intermediate Coil for High Efficiency," IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 5861-5870, Nov. 2014.
[21]K. Aditya and S. S. Williamson, "Design Guidelines to Avoid Bifurcation in a Series–Series Compensated Inductive Power Transfer System," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3973-3982, May 2019.
[22]T. Thabet and J. Woods, "Impact of connection type on the efficiency of wireless power transfer systems," 2017 International Conference on Circuits, System and Simulation (ICCSS), London, 2017, pp. 146-150.
[23]W. Zhang, S. Wong, C. K. Tse and Q. Chen, "Analysis and Comparison of Secondary Series- and Parallel-Compensated Inductive Power Transfer Systems Operating for Optimal Efficiency and Load-Independent Voltage-Transfer Ratio," IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2979-2990, June 2014.
[24]M. Kiani and M. Ghovanloo, "The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9, pp. 2065-2074, Sept. 2012.
[25]Z. Liu, Z. Chen, J. Li, Y. Guo and B. Xu, "A Planar L-Shape Transmitter for a Wireless Power Transfer System," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 960-963, 2017.
[26]T. Zarifi, K. Moez, and P. Mousavi, “Impedance Matching Network for Ground Eliminated Open-ended Resonant Coil Structure in Distributed Wireless Power Transmission Systems,” IET Sci. Measur. Tech., vol. 11, no. 7, pp. 856-860, Oct. 2017.
[27]Y. Lyu et al., "A Method of Using Nonidentical Resonant Coils for Frequency Splitting Elimination in Wireless Power Transfer," IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6097-6107, Nov. 2015.
[28]K. Song, Z. Li, J. Jiang and C. Zhu, "Constant Current/Voltage Charging Operation for Series–Series and Series–Parallel Compensated Wireless Power Transfer Systems Employing Primary-Side Controller," IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 8065-8080, Sept. 2018.
[29]S. Aldhaher, P. D. Mitcheson and D. C. Yates, "Load-independent Class EF inverters for inductive wireless power transfer," 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, 2016, pp. 1-4.
[30]P. S. Huynh and S. S. Williamson, "A Soft-switched Active Clamped Half-bridge Current Source Inverter for Wireless Inductive Power Transfer," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 2129-2134.
[31]Y. Jiang, L. Wang, Y. Wang, J. Liu, X. Li and G. Ning, "Analysis, Design, and Implementation of Accurate ZVS Angle Control for EV Battery Charging in Wireless High-Power Transfer," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4075-4085, May 2019.
[32]B. X. Nguyen, J. Singh, X. Zhang, W. Jiang, L. H. Koh and P. Wang, "Design and Control for ZVS Constant Current and Constant Voltage Wireless Charging Systems," 2018 IEEE 4th Southern Power Electronics Conference (SPEC), Singapore, Singapore, 2018, pp. 1-7.
[33]D. Ahn and S. Hong, "Effect of Coupling Between Multiple Transmitters or Multiple Receivers on Wireless Power Transfer," IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2602-2613, July 2013.
[34]R. Johari, J. V. Krogmeier and D. J. Love, "Analysis and Practical Considerations in Implementing Multiple Transmitters for Wireless Power Transfer via Coupled Magnetic Resonance," IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1774-1783, April 2014.
[35]B. H. Waters, B. J. Mahoney, V. Ranganathan, and J. R. Smith, “Power delivery and leakage field control using an adaptive phased array wireless power system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6298–6309, Nov. 2015.
[36]L. Tan et al., "Coordinated Source Control for Output Power Stabilization and Efficiency Optimization in WPT Systems," IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3613-3621, April 2018.
[37]Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen and L. Yuan, "Selective Wireless Power Transfer to Multiple Loads Using Receivers of Different Resonant Frequencies," IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6001-6005, Nov. 2015.
[38]K. Lee and D. Cho, "Diversity Analysis of Multiple Transmitters in Wireless Power Transfer System," IEEE Transactions on Magnetics, vol. 49, no. 6, pp. 2946-2952, June 2013.
[39]F. Jolani, Y.-Q. Yu, and Z. Chen, “A planar magnetically-coupled resonant wireless power transfer using array of resonators for efficiency enhancement,” Proc. IEEE MTT-S Int. Microw. Symp., May 2015, pp. 1–4.
[40]Y. Yang, S. Tan and S. Y. R. Hui, "Front-End Parameter Monitoring Method Based on Two-Layer Adaptive Differential Evolution for SS-Compensated Wireless Power Transfer Systems," IEEE Transactions on Industrial Informatics, vol. 15, no. 11, pp. 6101-6113, Nov. 2019.
[41]M. Fu, T. Zhang, X. Zhu, P. C. Luk and C. Ma, "Compensation of Cross Coupling in Multiple-Receiver Wireless Power Transfer Systems," IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 474-482, April 2016.
[42]M. Fu, T. Zhang, C. Ma and X. Zhu, "Efficiency and Optimal Loads Analysis for Multiple-Receiver Wireless Power Transfer Systems," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 801-812, March 2015.
[43]R. Tseng, B. von Novak, S. Shevde and K. A. Grajski, "Introduction to the alliance for wireless power loosely-coupled wireless power transfer system specification version 1.0," 2013 IEEE Wireless Power Transfer (WPT), Perugia, 2013, pp. 79-83.
[44]J. Nadakuduti, L. Lu and P. Guckian, "Operating frequency selection for loosely coupled wireless power transfer systems with respect to RF emissions and RF exposure requirements," 2013 IEEE Wireless Power Transfer (WPT), Perugia, 2013, pp. 234-237.
[45]IXYS Corporation, IXFH 44N50P/ IXFK 44N50P/ IXFT 44N50P, Datasheet, PolarHVTM HiPerFET/ Power MOSFET, 2006.
[46]AVAGO TECHNOLOGIES LIMITED, HCPL-3120/ J312/ HCNW3120, Datasheet, 2.5 Amp Output Current IGBT Gate Drive Optocoupler, 2016-2019.
[47]林昱廷,具錯位容忍能力之同軸無線電能傳輸系統設計於軌道運輸載具供電應用,碩士論文,國立成功大學電機工程學系,臺南市,2019年。
[48]李韋華,兼具自動功率調節技術之在線型電動車充電系統設計與研製,碩士論文,國立成功大學電機工程學系,臺南市,2016。
電子全文 電子全文(網際網路公開日期:20250716)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔