(3.215.180.226) 您好!臺灣時間:2021/03/06 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥焙
研究生(外文):CHEN, YEN-PEI
論文名稱:全向輪型機器人之滑移估測
論文名稱(外文):Slip Estimation of Mecanum Wheeled Omnidirectional Robots
指導教授:王明賢王明賢引用關係
指導教授(外文):WANG, MING-SHYAN
口試委員:李祖聖謝旻甫
口試委員(外文):Li, Tzuu-HsengHSIEH, MIN-FU
口試日期:2020-07-29
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:全向輪
外文關鍵詞:Mecanum wheeled omnidirectional
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要提出一運用於麥肯納(Mecanum)輪型全向移動機器人之滑移估測及其補償控制方法,及其控制系統軟硬體實現。機器人移動平台的驅動輪與地面的摩擦係數與滑移的狀況,對機器人運動控制的性能有很大的影響,由其是麥肯納輪型全向輪移動平臺,因為麥肯納輪的自由滾輪與輪胎滾動方向成45度夾角,運用獨立驅動四輪之縱向力與橫向力的合力,來驅動機器人的移動,相較於一般輪型機器人對摩擦係數與滑移率的影響更為敏感。因此能夠正確且即時地估測出機器人移動平台的每個驅動輪各別的摩擦係數、滑移率、輪胎縱向力和加速度,並依據相關參數進行補償控制,為麥肯納輪型全向機器人精確運動控制不可或缺的重要課題。
麥肯納輪型全向機器人之滑移估測與補償控制系統之開發,以一般輪型移動平台之滑移估測與補償控制為基礎,運用多軸加速度計感測器MPU-9250資料推導全向輪平台之縱向速度、橫向速度與轉向角度等資訊,比對由驅動馬達轉動編碼器感測資料所推導之縱向速度與橫向速度,運用遞迴最小平方估測法(Recursive least-square estimation method, RLS),估測四個驅動輪即時的滑移率變化狀況,並依據滑移率變化狀況進行控制補償,動態調整四個全向輪的驅動轉速,使全向移動機器人可以準確地跟隨預定的運動軌跡進行移動。
本論文運用Microchip公司所開發之微控制器dsPIC30F6010A實現所發展之滑移估測與補償控制法則,並實地運用於一8吋麥肯納輪型之全向機器人平台之運動控制上。此全向機器人之驅動系統具備4顆100W無刷直流馬達與19:1之減速齒輪箱,分別驅動全向移動平台之四具8吋麥肯納輪。由全向機器人之特定軌跡運動控制實驗結果可知,具備滑移估測與補償控制之移動平台可呈現比無補償者更高之循跡準確性,足證所開發之麥肯納輪型全向移動機器人之滑移估測及補償控制方法的有效性與正確性。

This thesis mainly proposes a slip estimation and compensation control method applied to Mecanum wheeled omnidirectional mobile robot and implements the system software and hardware. The friction coefficient and slip conditions between the driving wheels of the robot mobile and the ground have a great impact on the performance of the robot motion control, especial for a Mecanum wheeled omnidirectional mobile robot because of a 45-degree angle between the roller and the shaft of the wheel. The combined force of the each longitudinal force and the lateral force of the independent driving four wheels is used to drive the movement of the robot. Compared with the general wheel-type robot, the friction coefficient and slip ratio are more sensitive. Therefore, it is an important issue to perform compensation control based on related parameters by accurately and instantly estimating the friction coefficient, slip ratio, tire longitudinal force and acceleration of each driving wheel of the Mecanum wheeled robot.
The development of the slip estimation and compensation control system for the Mecanum wheeled omnidirectional robot is based on the general wheeled mobile platform and uses sensing data from multi-axis accelerometers MPU-9250 to derive the longitudinal speed, lateral speed, and steering angle. The information is compared with those data from rotating encoders of motors. In addition, the recursive least-square estimation method (RLS) is used to estimate the real-time changes of slip rates of the four driving wheels. According to the slip rate changes, the system performs control compensation by dynamically adjusting the driving speeds of the four omnidirectional wheels so that the omnidirectional mobile robot can accurately follow the predetermined motion trajectory.
The Microchip microcontroller dsPIC30F6010A is used to implement the slip estimation and compensation control laws to the motion control of an 8-inch Mecanum wheeled omnidirectional robot. The driving system of this omnidirectional robot is equipped with four 100W brushless DC motors and a 19:1 reduction gearbox, which respectively drives the corresponding wheel. From the experimental results of specific motion control trajectory of the omnidirectional robot, it can be seen that the mobile robot with slip estimation and compensation control can show higher tracking accuracy than the one without compensation. It proves the effectiveness and correctness of slip estimation and compensation control methods for mobile robots.

摘 要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3論文章節介紹 4
第二章 數位控器與周邊介紹 5
2.1dsPIC30F 系列控制器 5
2.2周邊功能 6
2.2.1通用非同步收發傳輸器(UART) 6
2.2.2類比數位訊號轉換器(ADC) 6
2.2.3脈波寬度調變技術(Pulse Width Modulation, PWM) 7
第三章 車子運動控制模型 8
3.1車子運動控制建模 8
3.2遞迴最小平方估測法 12
3.3全向輪數學模型 13
3.4全向輪型機器人運動控制模型 17
第四章 系統架構 24
4.1動作流程 24
4.2硬體配置 27
4.3軟體架構 30
第五章 實驗結果 32
5.1系統架構 32
5.2 實驗平台介紹 33
5.3實驗數據 36
第六章 結論與未來展望 51
6.1結論 51
6.2未來展望 51
參考文獻 52


[1]Guoqing Xu, Kun Xu, Chunhua Zheng, and Taimoor Zahid, “Optimal Operation Point Detection Based on Force Transmitting Behavior for Wheel Slip Prevention of Electric Vehicles,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 2, pp. 481-490, 2016.
[2]Matteo Amodeo, Antonella Ferrara, Riccardo Terzaghi, and Claudio Vecchio, “Wheel Slip Control via Second-Order Sliding-Mode Generation,” IEEE Transactions on, Intelligent Transportation Systems, Vol. 11, No. 1, pp 122-131, 2012.
[3]Ricardo de Castro, Rui Esteves Araújo, and Diamantino Freitas, “Wheel Slip Control of EVs Based on Sliding Mode Technique With Conditional Integrators,” IEEE Transactions on Intelligent Electronics, Vol. 60, No. 8, pp 3256 – 3271, 2013.
[4]Veer Alakshendra and Shital S. Chiddarwar, “A Robust Adaptive Control of Mecanum Wheel Mobile Robot: Simulation and Experimental Validation,” in Proc. of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5606-5611, 2016.
[5]Joe Siang Keek, Ser Lee Loh, and Shin Horng Chong, “Comprehensive Development and Control of a Path-Trackable Mecanum-Wheeled Robot,” IEEE Access, pp. 18368-18381, 2019
[6]Hsiao-Lang Wu, Ching-Chih Tsai, Feng-Chun Tai “Adaptive Nonsingular Terminal Sliding-Mode Formation Control Using ORFWNN for Uncertain Networked Heterogeneous Mecanum-Wheeled Omnidirectional Robots,” in Proc. of the 2015 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2015
[7]施慈暉,無刷直流馬達之適應性網路模糊推論控制暨無感測控制,南臺科技大學電機研究所碩士論文,2015。
[8]曾百由,dsPIC 數位訊號控制器原理與應用 MPLAB C30 開發實務,宏友圖書開發股份有限公司,2009。
[9]dsPIC30F6010A, 16-Bit Microcontrollers and Digital Signal Controllers Datasheet, Microchip Technology Inc.
[10]Rajesh Rajamani, Gridsada Phanomchoeng, Damrongrit Piyabongkarn, and Jae Y. Lew, “Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients,” IEEE/ASME Transactions on MECHATRONICS, Vol. 17, No. 6, pp. 1183-1195, DECEMBER 2012.
[11]NEXUS Robot (麥克納姆輪公司),http://mobilerobotkit.com/60mm-aluminum- -compatible-mecanum-wheel-left-14144L.html
[12]Eka Maulana, M. Aziz Muslim, and Veri Hendrayawan, “Inverse Kinematic Implementation of Four-Wheels Mecanum Drive Mobile Robot Using Stepper Motors,” in Proc. of the 2015 International Seminar on Intelligent Technology and Its Applications, pp.51-56, 2015.
[13]Ching-Chih Tsai, Feng-Chun Tai, and Ying-Ru Lee, “Motion Controller Design and Embedded Realization for Mecanum Wheeled Omnidirectional Robots,” In Proc. of the 2011 World Congress on Intelligent Control and Automation, pp.546-551, 2011.
[14]楊哲維,以 Brush 輪胎縱向力模型為基礎之個別輪胎的路面摩擦係數估測之研究, 國立交通大學電控工程研究所碩士論文,2015。
[15]MPU-9250, https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

電子全文 電子全文(網際網路公開日期:20220831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔