跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/16 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許凱維
研究生(外文):Xu,Kai-Wei
論文名稱:製備1-T相二硫化鉬摻磷電觸媒材料並應用於析氫反應
論文名稱(外文):1-T Phase Molybdenum Disulfide Doping Phosphor Appliedin Hydrogen Evolution Reaction
指導教授:王聖璋
指導教授(外文):Wang,Sheng-Chang
口試委員:王聖璋林春榮胡龍豪
口試委員(外文):Wang,Sheng-ChangLin,Chun-RongHu,Lung-Hao
口試日期:2020-07-10
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:熱注入法二硫化鉬析氫反應電催化
外文關鍵詞:Molybdenum disulfideElectrocatalystsHydrogen evolution reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於能源短缺,使得人類開始重視再生能源的發展,氫氣一直被認為是理想的能源載體,特別是以水解產氫的方式。二硫化鉬 (Molybdenum disulfide, MoS2)擁有三角菱柱配位2H半導體相及八面體配位1T金屬導體相,其中以1T金屬相擁有高電子傳導性及高活性位點,有機會成為取代白金的電催化材料。本實驗用簡易、低成本之熱注入法製備摻雜磷的二硫化鉬奈米材料,並經由不同的製程溫度,形成擁有1T相二硫化鉬的高性能電催化劑。研究透過X光繞射儀 (X-ray diffraction, XRD)確認合成物晶相結構,高解析穿透式電子顯微鏡 (High resolution transmission electron microsocopy)分析微結構,恆電位電流儀量測其材料線性掃描伏安法(linear sweep voltammetry,LSV)、電化學阻抗譜(electrochemical impedance spectroscopy,EIS)、塔弗斜率(Tafel slope)。結果顯示所合成的二硫化鉬摻磷材料其Tafel斜率70mV dec-1比純二硫化鉬90 mV dec-1低,證明二硫化鉬摻雜磷有更良好的化學活性,二硫化鉬摻雜磷在EIS低頻區質量轉移斜率比二硫化鉬高,證明二硫化鉬摻磷擁有更良好的氫離子擴散速率。

關鍵詞: 熱注入法、二硫化鉬、析氫反應、電催化


In recent years, hydrogen has been considered the ideal renewable energy for human sustainable development, especially for the hydrogen from electrocatalytic water splitting. Molybdenum disulfide (MoS2) have a trigonal prismatic coordination 2H phase with semiconductor and octahedral coordination 1T phase with metal conductor. The 1T MoS2 metal phase has high electric conductivity and high density of active sites as potential replacement of Pt for electrocatalyst for water splittering. In this study, we uses a simple, low-cost route to prepare molybdenum disulfide-doped phosphorus by hot-injection method. Different synthesizing temperatures was conducted to forming a superior electrocatalytic 1T phase molybdenum disulfide. The phase and microstructure were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HTEM). The electrochemical properties including LSV, EIS and Tafel slope were measured by potentiostat (Autolab PGSTAT302N).The results shown that the phosphorus-doped molybdenum disulfide has a lower Tafel slope than pure molybdenum disulfide. It is proved that phosphorus-doped molybdenum disulfide has better chemical activity. According to the EIS measurement, the phosphorus-doped molybdenum disulfide shows higher mass transfer slope in the low frequency region than pure molybdenum disulfide, which prove that phosphorus-doped molybdenum disulfide has better hydrogen ion diffusion rate.
.
Keywords: Molybdenum disulfide、Electrocatalysts、Hydrogen evolution reaction.

摘要........... I
Abstract....... II
目錄.............III
第一章、序論.... 1
1.1前言..........1
1.2二硫化鉬的型態........ 2
1.3黑磷 (Black Phosphorus)..... 3
1.4研究動機與目的 ................4
第二章、文獻回顧..................5
2.1析氫反應(hydrogen evolution reaction﹐HER)... 5
2.2過渡金屬硫族................................. 6
2.2.1二硫化鉬 (Molybdenum disulfide, MoS2)...... 7
2.2.2 MoS2結構................................. 8
2.3二硫化鉬催化性質.............................. 9
2.3.1 1-T MoS2 vs 2-H MoS...................... 10
2.3.2判斷1-TMoS2與2-H MoS2................11
2.4過渡金屬磷化物(transition metal phosphides , TMPs).... 12
第三章、實驗方法與分析設備................................ 14
3.1實驗藥品............................................. 14
3.2實驗裝置............................................. 15
3.2.1電化學量測裝置...................................... 16
3.3實驗流程............................................. 17
3.3.1 油胺包覆二硫化鉬(OLA-protected Monolayer MoS2).... 17
3.3.2 二硫化鉬摻雜磷( MoS2-P)........................... 18
3.4分析儀器............................................. 22
3.4.1微結構與成分分析.................................... 22
3.4.2電化學性質分析...................................... 22
第四章、結果與討論....................................... 23
4.1 低層數MoS2製程...................................... 23
4.1.1合成.............................................. 23
4.1.2晶相分析........................................... 23
4.1.3 微結構分析........................................ 24
4.1.4 價數態與元素能譜分析............................... 25
4.1.5 電催化產氫效能量測與機制探討........................ 26
4.2 1T-MoS2-P製成...................................... 27
4.2.1 合成............................................. 27
4.2.2 成分分析.......................................... 27
4.2.3 微結構分析........................................ 28
4.2.4 價數態與元素能譜分析............................... 32
4.2.5 電催化產氫效能量測與機制探討........................ 38
4.2.6電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS)....... 39
第五章、結論.... 40
參考文獻........ 41


[1]J. Su, J. Zhou, L. Wang, L. Cong Chen, ”Synthesis and application of transition metal phosphides as electrocatalyst for water splitting,” Science Bulletin, vol 62(9), pp. 633-644, 2016.

[2]P. Liu, B. Xiang, ”2D hetero-structures based on transition metal dichalcogenides: fabrication, properties and applications,” Science Bulletin, vol 62(16), pp. 1148-1161, 2017.

[3]Manish Chhowalla, Hyeon Suk Shin,Goki Eda, Lain-Jong Li, Kian Ping Loh and Hua Zhang, ”The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol 5, 2013.

[4]Arun Kumar Singha, P. Kumar, D.J. Late, Ashok Kumar, S. Patel, Jai Singhd, ”2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects,” Applied Materials Today, vol 13, pp. 242–270, 2018.

[5]Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen and Markus Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nature materials, vol8, 2009.

[6]Yuan Y-Jun, Wang P, Li Z, Wu Y, Bai W, Su Y, Guan J, Wu S, Zhong J, Yu Z-Tao, Zou Z, “The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst,” Applied Catalysis B: Environmental, vol 242, pp. 1-8, 2019.

[7]K. Zhu, C. Li, Z. Jing, X. Liu, Y. He, X. Lv, Y. Wang, K. Liu, “Two-Dimensional TransitionMetal Dichalcogenides for Electrochemical Hydrogen Evolution Reaction,” FlatChem, vol 18, 100140, 2019.

[8]Wang, J., Xu, F., Jin, H., Chen, Y., & Wang, Y, “Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications,” Advanced Materials, vol 29(14), 1605838, 2017.

[9]Frank J. Crowne,Matin Amani,A. Glen Birdwell,Matthew L. Chin, Terrance P. ORegan,Sina Najmaei,Zheng Liu,Pulickel M. Ajayan,Jun Louand Madan Dubey, ”Blueshift of the A -exciton peak in folded monolayer 1H-MoS2” Physical Review B, vol 88, 235302, 2013.

[10]UnniKrishnana, ManjotKaura, Kulwinder Singha, Manjeet Kumarb, Akshay Kumara, “A synoptic review of MoS2: Synthesis to applications,” Superlattices and Microstructures, vol 128, pp. 274-297, April 2019.

[11]ZuoliHea, Wenxiu Quea, ”Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction,” Applied Materials Today, vol 3, pp. 23-56, 2016.

[12]Liu, P., & Rodriguez, J. A, ”Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effec,” Journal of the American Chemical Society, 127(42), pp.14871–14878, 2005.

[13]Yanmei Shia and Bin Zhang, “Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction,” Chemical Society Reviews, vol 45(6), pp.1529–1541, 2016.

[14]Anthony R. J. Kucernak* and Venkata N. Naranammalpuram Sundaram, ”Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium” J. Mater. Chem. A, vol 2,17435, 2014

[15]Xu, M., Han, L., Han, Y., Yu, Y., Zhai, J., & Dong, S, “Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution,” Journal of Materials Chemistry A, vol 3(43), pp. 21471–21477, 2015.

[16]Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C. Liu, “Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution,” Journal of Materials Chemistry A, vol 3(4), pp. 1656–1665, 2015.

[17]Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano, vol 8(2), pp. 1102–1120, 2014.

[18]Qi Ding,Bo Song,Ping Xuand Song Jin, “Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds,” Chem, vol 1(5), pp. 699–726, 2016.

[19]Mark A. Lukowski, Andrew S. Daniel, Fei Meng, Audrey Forticaux, Linsen Li, and Song Jin, “Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets.” Journal of the American Chemical Society, vol 135(28), pp. 10274–10277, 2013.

[20]Charlie Tsai, Karen Chan, Jens K, Nørskov, Frank AbildPedersen, “Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides,” Surface Science, vol 640, pp. 133–140, 2015.

[21]Subramaniam Jayabal, Jian Wu, Jiaye Chen, Dongsheng Geng, Xiangbo Meng, ” Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications,” Materials Today Energy, vol 10, pp. 264–279, 2018.

[22]Z.-T. Shi, et al, ” Hierarchical nanotubes assembled from MoS 2 -carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries,” Nano Energy, vol 22, pp. 27–37, 2016.

[23]J.V. Rojas, M. Toro-Gonzalez, M.C. Molina-Higgins, C.E. Castano, ” Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes,” Materials Science and Engineering: B, vol 205, pp. 28–35, 2016.

[24]Seung-Keun Park, Jin Koo Kim, and Yun Chan Kang, “Amorphous Molybdenum Oxysulfide Decorated pType Silicon Microwire Arrays PolytypeIn Situ Preparation of Mo 2 C Nanoparticles Embedded in Ketjenblack Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution,” International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal, 2015.

[25]Neha Desai,Sawanta Mali, Vijay Kondalkar, Rahul Mane, Chang Hongand Popatrao Bhosale, “ Chemically Grown MoO3 Nanorods for Antibacterial Activity Study,” Journal of Nanomedicine & Nanotechnology, vol 06(06), 2015.

[26]Congfang Chen, Aiping Wu, Haijing Yan, Yinglu Xiao, Chungui Tian and Honggang Fu, ” Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting,” Chemical Science, vol 9(21), pp. 4746–4755, 2018.

[27]Sarma, S., Ghosh, B., Ray, S. C., Wang, H., Mahule, T. S., & Pong, W.-F, “Electronic structure and magnetic behaviors of exfoliated MoS2 nanosheets,” Journal of Physics: Condensed Matter,2019.

[28]Ma, Y. and Lin, C, “Pyrite oxidation under initially neutral pH conditions and in the presenceof Acidithiobacillusferrooxidans and micromolar hydrogen peroxide,” Biogeosciences Discussions, vol 9, pp. 557-579, 2012.

[29]Yifu Yu, Gwang-Hyeon Nam, Qiyuan He, Xue-Jun Wu, Kang Zhang , Zhenzhong Yang, Junze Chen, Qinglang Ma, Meiting Zhao, Zhengqing Liu, Fei-Rong Ran, Xingzhi Wang, Hai Li , Xiao Huang , Bing Li, Qihua Xiong, Qing Zhang, Zheng Liu , Lin Gu, Yonghua Du , Wei Huangand Hua Zhang, ”High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals,” Nature Chemistry, vol 10(6), pp. 638–643, 2018.

[30]Yixin Yao,KelongAo, PengfeiLv and Qufu Wei, ”MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction,” Nanomaterials, vol 9(6), 2019.

[31]D. Wang, X. Zhang, S. Bao, Z. zhang, F. Hao and Z. Wu, J, ”Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution,” Journal of Materials Chemistry A, vol 5(6), pp. 2681–2688, 2017.

[32]H. Li, X.H. Zhang, Z.K. Tang, “Catalytic growth of large area monolayer molybdenum disulfide film by chemical vapor deposition” Tsf, 2018.

[33]Zhang Z, Dong Y, Liu G, Li J, Sun H, Luo H, Liu S, ”The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 124431, 2020.

[34]Chengshuai Chang, Xuena Yang,Shisen Xiang, Haoan Que, Mei Li, “ Thiourea aldehyde resin-based carbon/graphene composites for high-performance supercapacitors,” Journal of Solid State Electrochemistry, vol 22(1), pp. 113–121, 2017.

[35]Boyapati & Rao, Madala & S, Srinivasa & Bojja, Sreedhar, ”Surface Analysis of Carbon Steel Protected from Corrosion by a New Ternary Inhibitor Formulation Containing Phosphonated Glycine, Zn2+ and Citrate,” Journal of Surface Engineered Materials and Advanced Technology, vol 03, pp. 28-42, 2013.

[36]Elsener, B., Crobu, M., Scorciapino, M.A. et al, “Electroless deposited Ni–P alloys: corrosion resistance mechanism,” J Appl Electrochem, vol 38, 1053, 2008.

[37]Neng Liu, Khalid Moumanis, Sonia Blais, Jan J. Dubowski, “XPS study of InP/InGaAs/InGaAsP microstructures irradiated with ArF laser in air and deionized water,” Synthesis and Photonics of Nanoscale Materials IX, 2012.

[38]Kewei Gong, Changzheng Sun, Bing Xiong, Yanjun Han, Zhibiao Hao, Jian Wang, Lai Wang, and Hongtao Li, “Oxides formation on hydrophilic bonding interface in plasma-assisted InP/Al2O3/SOI direct wafer bonding,” AIP Advances, vol 7(1), 015039, 2017.

[39]Nathalie Riphaus,Barbara Stiaszny, Hans Beyer,Sylvio Indris, Hubert A Gasteigerand Stefan J Sedlmaier, ”Editors' Choice—UnderstandingChemical Stability Issues between Different Solid Electrolytes in All-Solid-State Batteries,” Journal of The Electrochemical Society, vol 166, pp. 975-983, 2019.

[40]D. Wang, B. Su, Y. Jiang, L. Li, B.K. Ng, Z. Wu, F. Liu, “Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution,” Chemical Engineering Journal, vol 330, pp. 102-108, 2017.

[41]AliEftekhari, ”Electrocatalysts for hydrogen evolution reaction,” International Journal of Hydrogen Energy, vol 42(16), pp. 11053–11077, 2017.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊