跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳鉞
研究生(外文):Chen,Jia-Yue
論文名稱:利用牙科錐狀射束電腦斷層開發聽小骨擺位技術與影像品質保證假體
論文名稱(外文):Develop the Ossicles Positioning and Image Quality Assurance Phantom Using Dental Cone Beam Computed Tomography
指導教授:許博翔許博翔引用關係
指導教授(外文):Hsu, Po-Hsiang
口試委員:洪茂欽黃麗娟許博翔
口試委員(外文):Hung, Mao-ChinHuang, Li-ChuanHsu, Po-Hsiang
口試日期:2020-07-31
學位類別:碩士
校院名稱:慈濟科技大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:牙科錐狀射束電腦斷層聽小骨影像品質保證壓克力
外文關鍵詞:dental cone beam computed tomographyossiclesimage quality assuranceacrylic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用牙科錐狀射束電腦斷層開發聽小骨擺位技術,並使用壓克力製作影像品質保證假體進行探討。以耳模型及PH-47牙科用頭部假體進行擺位。利用雷射雕刻機雕刻壓克力製做支架系統以及照野範圍、解析度、結構和灰階值的假體,並使用Gammex RMI 467不同電子密度假體進行灰階值比較,作為影像品質保證假體之測試項目。利用支架及對位面板進行掃描,聽小骨為外耳道向內3 cm及向上1.5 cm.使用壓克力影像品質保證假體進行掃描,照野假體在影像上顯現的照野範圍為高度3.6 cm,寬度5.3 cm;壓克力解析度假體在ImageJ的量測下獲得三個平面的解析度分別為0.025、0.01及2.154 lp/mm;壓克力實心立方塊皆可以產生二維影像,但是在三維影像上5 cm則無法顯示;在灰階值的比較上,壓克力的灰階值為110.047,五個骨假體的灰階值為121.218-176.563,電子密度假體的灰階值與電子密度R2為0.9803。本研究利用牙科錐狀射束電腦斷層掃描儀CS 9000設計壓克力支架系統實現可應用於牙科錐狀射束電腦斷層的聽小骨擺位方式,且根據設計能夠符合多數患者的掃描範圍。以壓克力作為影像品質保證假體材料可以對照野範圍進行測試,但解析度假體及實心壓克力因為材質會造成部分影像上的誤判及缺陷。影像之灰階值與電子密度具良好線性關係,將有助於未來開發相關之檢測技術。
Background:In this study, we develop ossicles positioning technology by dental cone-beam computed tomography, and using acrylic to make image quality assurance phantom.
Materials & methods:Position by ear model and PH-47 dental radiology head phantom. Make the bracket system and phantom of the field range, resolution, structure and gray-scale value test by using a laser engraving machine to engrave acrylic. And compare the gray-scale value as a test item for the image quality assurance phantom by using Gammex RMI 467 electronic density phantom.
Results:Positioning with the bracket and alignment panel, the ossicles is location from external auditory canal 3 cm inward and 1.5 cm upward. Acrylic image quality assurance phantom was used for scanning. The field of view of phantom on the image is 3.6 cm in height and 5.3 cm in width; The resolutions measurement of ImageJ by the acrylic phantom from three planes are 0.025, 0.01 and 2.154 lp/mm; all of solid acrylic cubes can produce 2D images, but can not be displayed on 3D images at 5 cm. In comparison of grayscale values, acrylic is approximately 110.047, other five bone phantoms from Gammex RMI 467 are 121.218 to 176.563, also R2 of The gray scale values and electron density phantom is 0.9803.
Conclusion:In our study using the dental conebeam computed tomography scanner CS 9000 to design an acrylic stent system to realize positioning of the ossicles method in dental cone beam computed tomography, and according to this design, it can meet the scanning of most patients range. However, because of the material, resolution phantom and solid acrylic will cause misjudgments and defects on images .The gray-scale value of the image has a good linear relationship with the electron density, which will help the development of related detection technologies in the future.


中文摘要....I
英文摘要....II
第一章 緒論.... 1
1.1 研究背景.... 1
1.2 研究動機.... 7
1.3 研究目的.... 8
第二章 材料與方法.... 9
2.1 實驗儀器.... 9
2.2 發展聽小骨掃描模式.... 11
2.2.1 下頷支撐.... 11
2.2.2 原點位置.... 12
2.2.3 移動範圍.... 13
2.2.4 對位面板.... 15
2.3 壓克力材料品質保證假體之可行性探討.... 16
2.3.1 照野範圍.... 16
2.3.2 解析度假體製作.... 17
2.3.3 結構比較.... 18
2.3.4 灰階值比較.... 20
第三章 結果.... 21
3.1 原點位置.... 21
3.2 移動範圍.... 22
3.3 照野範圍.... 27
3.4 對位測試.... 27
3.5 解析度測試.... 33
3.6 結構測試.... 41
3.7 灰階值.... 46
第四章 討論.... 56
第五章 結論.... 58
參考文獻.... 59
附件一、 MERCURY III 雷射雕刻機規格.... 61
附件二、 牙科錐狀射束電腦斷層掃瞄儀CS 9000儀器規格.... 62
1. Loubele M., Bogaerts R., Van Dijck E., Pauwels R., Vanheusden S., Suetens P., Marchal G., Sanderink G. and Jacobs R., “Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications”Eur J Radiol , 71, 461–468, 2009
2. Scarfe W. C., Farman A.G., “What is cone-beam CT and how does it work?” Dent Clin North Am, 52, 707-730, 2008.
3. Scarfe W.C., Angelopoulos, Christos, Maxillofacial cone beam computed tomography. Springer, 2018.
4. Schulze R., Heil U., Gross D., Bruellmann D. D., Dranischnikow E., Schwanecke U. and Schoemer E, “Artefacts in CBCT: a review“, The British Institute of Radiology, 40, 265-273, 2011
5. Xu J., Reh D. D., Carey J. P., Mahesh M. and Siewerdsen J. H., “Technical Assessment of a Cone-Beam CT Scanner for Otolaryngology Imaging: Image Quality, Dose, and Technique Protocols”, Med Phys, 39, 4932-4942, 2012.   
6. Goelzer B., Hansen C. H., Sehrndt G. A., World Health Organization., and Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Occupational exposure to noise : evaluation, prevention and control, WHO, Federal Institute for Occupational Safety and Health, 2001
7. https://www.pnhb.mohw.gov.tw/?aid=509&pid=75&page_name=detail&iid=61, 恆春旅遊醫院,認識聽力檢查,2008。
8. Trojanowska A., Drop A., Trojanowski P., Rosińska-Bogusiewicz K., Klatka J. and Bobek-Billewicz B., “External and middle ear diseases: radiological diagnosis based on clinical signs and symptoms”, Insights Imaging, 3, 33-48, 2012
9. Pollaers K., Broadbent C. andKuthubutheen J., “Misplaced incus: an unusual complication of a temporal bone fracture”, BMJ Case Rep, 2019
10. Decraemer W. F., Dirckx J. J. and Funnell W. R., “Three-dimensional modelling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner”, J Assoc Res Otolaryngol, 4, 250-263, 2003.
11. Salih W. H., Buytaert J. A., Aerts J. R., Vanderniepen P., Dierick M. and Dirckx J. J., “Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains”, Hear Res, 284, 1-5,2012.
12. Granados A., Orejuela J. F.and Ospina L., CT imaging of the temporal bone (TB): making easy what used to be hard, ECR, C-1639, 2016
13. Swartz J, Loevner L, Imaging of the temporal bone, 4th ed., Thieme Medical Publishers, 2009.
14. Joshi V. M., Navlekar S. K., Kishore G. R., Reddy K. J. and Kumar E. C., “CT and MR Imaging of the Inner Ear and Brain in Children With Congenital Sensorineural Hearing Loss”, Radiographics , 32, 683-698, 2012.
15. Naito Y., Pediatric Ear Diseases, Basel, Karger, 35-46, 2013
16. McGrath P., Mills P., Atlas of Sectional Anatomy: Head, Neck and Trunk, 2nd ed, Basel, Karger, 99-121, 1985
17. Bushberg J. T., Seibert J. A., Leidholdt E. M. and Boone J. M., The Essential Physics of Medical Imaging, Lippincott Williams & Wilkins, 2011.
18. Whitson H, Quantifying differences in CT image quality between a model-based iterative reconstruction algorithm, an adaptive statistical iterative reconstruction algorithm, and filtered back projection, Computer Science, 2017.
19. Sebestyen G., Fujikawa S., Galassi N. and Chuchra A., Low Earth Orbit Satellite Design, Springer, 2018.
20. William L., Wolfe, Introduction to Infrared System Design, SPIE Press, 1996.
21. Jerrold T. B., The Essential Physics of Medical Imaging, Lippincott Williams & Wilkins, 2002.
22. 蔡惠予,黃怡璇,陳建全,劉鶴齡著。電腦斷層掃描儀醫療曝露年度品質保證操作程序書,行政院原子能委員會,第8頁, 2011。
23. Whitson H., Quantifying differences in CT image quality between a model-based iterative reconstruction algorithm, an adaptive statistical iterative reconstruction algorithm, and filtered backprojection, Department of Medical Physics
and the Oregon Health & Science University School of Medicine, 2017, Master of Science

電子全文 電子全文(網際網路公開日期:20250827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文