跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠穎
研究生(外文):Chen, Guan-Ying
論文名稱:IDO/TDO酵素活性的體外功能性平台之建立與評估
論文名稱(外文):Establishment and evaluation of IDO/TDO enzyme activity in vitro functional platform
指導教授:江信仲
指導教授(外文):Jiang, Shinn-Jong
口試委員:許豪仁林進裕
口試委員(外文):Hsu, Hao-JenLin, Chin-Yu
口試日期:2020-07-17
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學系生物化學碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:46
中文關鍵詞:免疫治療
外文關鍵詞:Immunotherapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
癌症已經成為現代化社會中主要死因之一,不僅位居台灣十大死因之首位,美國癌症學會的資料也顯示,在2018年全球新增1810萬的癌症病例,且有960萬人死於癌症,世界衛生組織(WHO)推估2023年之後,全球每年將有2,200萬新增的癌症病例。在癌症免疫治療標的的研究中,除了標靶單株抗體的發展,吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase, IDO)與色氨酸2,3-雙加氧酶(tryptophan 2,3-dioxygenase, TDO)的小分子抑制劑近年來也被認為是一個新穎的癌症免疫治療藥物。IDO、TDO這兩個酵素均參與在代謝色氨酸(tryptophan)的過程,是犬尿氨酸(kynurenine)途徑的速率決定步驟(rate-limiting step)之限速酶。色氨酸代謝為犬尿氨酸後可以降低T細胞的活性以及增殖能力,也會使得樹突細胞(dendritic cell)將CD4+ T細胞轉化為調節型T細胞(T regulatory cells, Tregs)。這兩種調控作用均會影響並使得宿主的免疫功能受到抑制,在腫瘤的微環境(microenvironment)中幫助腫瘤細胞從免疫監控中逃脫,因而增加腫瘤細胞的免疫耐受性;因此本篇研究目的為建立細胞內IDO/TDO活性測定平台,以及篩選新穎的IDO/TDO抑制劑。在本篇研究中分別透過HT-29以及U-87MG細胞株表達IDO和TDO兩種蛋白,再給予色胺酸及藥物反應,收取培養細胞之上清液,使用液相層析質譜儀(LC-MS)分析上清液中之色胺酸和犬尿胺酸之含量,評斷藥物是否有抑制IDO或TDO酵素活性之功能。在本篇實驗結果顯示,由禾伸堂生技公司所提供的化合物AB-8198及其經由許豪仁老師實驗室修飾後之衍生物在細胞平台內皆沒有抑制IDO酵素活性之能力;而AB-8198和其衍生物HS14705、HS14708在細胞平台中有能力抑制TDO酵素活性,但修飾後之衍生物在細胞平台中可能受到細胞膜等因素干擾,無法順利進入細胞內,造成半抑制濃度未能優於AB-8198。
Cancer has become one of the leading causes of death in modern society. Not only is it the top ten cause of death in Taiwan, but the American Cancer Society also shows that in 2018, 18.1 million cancer cases were added globally, and 9.6 million people died of cancer. The World Health Organization (WHO) estimates that after 2023, there will be 22 million new cancer cases worldwide each year. In the study of cancer immunotherapy specimens, in addition to the development of targeted monoclonal antibodies, indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) doped with small molecule inhibitors is also considered to be a novel cancer immunotherapy drug. The two enzymes IDO and TDO are involved in the process of metabolizing tryptophan, which is the rate-limiting enzyme of the rate-limiting step of the kynurenine pathway. Metabolism of tryptophan into kynurenine can reduce the activity and proliferation of T cells, and also make dendritic cells convert CD4+ T cells into T regulatory cells (Tregs). Both of these regulatory effects will affect and suppress the immune function of the host, and help tumor cells escape from immune surveillance in the microenvironment of the tumor, thus increasing the immune tolerance of the tumor cells; therefore the purpose of this research In order to establish an intracellular IDO/TDO activity measurement platforms and to screen novel IDO/TDO inhibitors. In this study, two kinds of proteins, IDO and TDO, were expressed through HT-29 and U-87MG cell lines, and then tryptophan and drug were added. The supernatant of the cultured cells was collected and the contents of tryptophan and kynurenine in the supernatant was analyzed by liquid chromatography mass spectrometry (LC-MS) to judge whether the drug has the function of inhibiting the enzyme activity of IDO or TDO. The experimental results show that the compound AB-8198 provided by He Shen Tang Biotechnology Company and its derivatives modified by Dr. Hsu’s laboratory have no ability to inhibit IDO enzyme activity in the cell platform; meanwhile, AB-8198 and its derivatives HS14705, HS14708 have the ability to inhibit TDO enzyme activity in the cell platform, but the modified derivatives may be interfered by cell membranes and other factors in the cell platform, and cannot enter the cell smoothly, resulting in IC50 concentration failed to outperform AB-8198.
摘要 I
ABSTRACT II
目錄 IV
圖表目錄 VI
壹、研究背景 1
一、免疫治療(Immune therapy) 1
1.免疫反應(Immune response) 1
2.免疫治療(Immunotherapy) 2
二、吲哚胺2,3-雙加氧酶(Indoleamine 2,3-dioxygenase, IDO) 4
三、色胺酸2,3-雙加氧酶(Tryptophan 2,3-dioxygenase, TDO) 5
貳、研究動機與目的 6
參、實驗材料與方法 7
一、實驗儀器 7
二、藥品與試劑 8
三、實驗方法 12
1、細胞培養 (Cell culture) 12
2、細胞活性測試(Cell viability assay) 14
3、吲哚胺2,3-雙加氧酶酵素活性半抑制濃度測定 (IDO activity IC50 assay) 14
4、色胺酸2,3-雙加氧酶酵素活性半抑制濃度測定 (TDO activity IC50 assay) 15
5、西方墨點法 (Western blotting) 15
6、西方墨點法量化(Western blotting quantitation) 20
7、HPLC-MS標準品製備與校正曲線 20
8、液相層析質譜儀 (Liquid Chromatography-Mass Spectrometry, LC-MS) 分析條件設定 21
9、實驗數據統計分析(Statistical analysis) 22
肆、實驗結果 23
一、測試化合物是否會對人類內皮細胞(HMEC-1)具有細胞毒性之影響 23
二、利用IFN-刺激人類大腸癌細胞(HT-29&HCT-116)表達IDO 23
三、確認人類星形膠質母細胞瘤(U-87MG)表現TDO 23
四、使用HPLC-MS 分析化合物對吲哚胺2,3-雙加氧酶(IDO)之親和力 24
五、HPLC-MS分析化合物對色胺酸2,3-雙加氧酶(TDO)之親和力 24
伍、討論 37
陸、結論 39
柒、參考文獻 40
1. Sun T, Nguyen A, Gommerman JL. Dendritic Cell Subsets in Intestinal Immunity and Inflammation. J Immunol 2020; 204(5):1075-1083.
2. Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016; 9(5):1113-1124.
3. Fearon DT, Locksley RM. The Instructive Role of Innate Immunity in the Acquired Immune Response. Science 1996; 272:50-54.
4. Hawken RJ, Beattie CW, Schook LB. Resolving the genetics of resistance to infectious diseases. Revue scientifique et technique (International Office of Epizootics) 1998; 17(1):17-25.
5. Wu Y, Li J, Kaboli PJ, Shen J, Wu X, Zhao Y, et al. Natural Killer Cells as a Double-edged Sword in Cancer Immunotherapy: A Comprehensive Review from Cytokine Therapy to Adoptive Cell Immunotherapy. Pharmacol Res 2020:104691.
6. Parkin J, Cohen B. An overview of the immune system. The Lancet 2001; 357(9270):1777-1789.
7. De Giovanni M, Cutillo V, Giladi A, Sala E, Maganuco CG, Medaglia C, et al. Spatiotemporal regulation of type I interferon expression determines the antiviral polarization of CD4(+) T cells. Nat Immunol 2020.
8. Medzhitov R, Janeway CA, Jr. Innate immunity: impact on the adaptive immune response. Current opinion in immunology 1997; 9(1):4-9.
9. Uzzo RG, Rayman P, Kolenko V, Clark PE, Bloom T, Ward AM, et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res 1999; 5(5):1219-1229.
10. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382):1350-1355.
11. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood 2015; 125(22):3393-3400.
12. Bertoletti A, Tan AT, Koh S. T-cell therapy for chronic viral hepatitis. Cytotherapy 2017; 19(11):1317-1324.
13. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14(2):135-146.
14. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795):1960-1964.
15. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 2015; 125(9):3384-3391.
16. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science translational medicine 2016; 8(328):328rv324.
17. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27(4):450-461.
18. Yang M, Du W, Yi L, Wu S, He C, Zhai W, et al. Checkpoint molecules coordinately restrain hyperactivated effector T cells in the tumor microenvironment. Oncoimmunology 2020; 9(1):1708064.
19. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 2005; 201(10):1591-1602.
20. Kim TK, Herbst RS, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends Immunol 2018; 39(8):624-631.
21. Ogawa K, Hara T, Shimizu M, Nagano J, Ohno T, Hoshi M, et al. (-)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol Lett 2012; 4(3):546-550.
22. Sanmamed MF, Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2018; 175(2):313-326.
23. Hascitha J, Priya R, Jayavelu S, Dhandapani H, Selvaluxmy G, Sunder Singh S, et al. Analysis of Kynurenine/Tryptophan ratio and expression of IDO1 and 2 mRNA in tumour tissue of cervical cancer patients. Clin Biochem 2016; 49(12):919-924.
24. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol 2002; 168(8):3771-3776.
25. Chauhan J, Dasgupta M, Luthra T, Awasthi A, Tripathy S, Banerjee A, et al. Design, synthesis and biological evaluation of a novel library of antimitotic C2-aroyl/arylimino tryptamine derivatives that are also potent inhibitors of indoleamine-2, 3-dioxygenase (IDO). Eur J Pharm Sci 2018; 124:249-265.
26. Cheng MF, Hung MS, Song JS, Lin SY, Liao FY, Wu MH, et al. Discovery and structure-activity relationships of phenyl benzenesulfonylhydrazides as novel indoleamine 2,3-dioxygenase inhibitors. Bioorg Med Chem Lett 2014; 24(15):3403-3406.
27. Coluccia A, Passacantilli S, Famiglini V, Sabatino M, Patsilinakos A, Ragno R, et al. New Inhibitors of Indoleamine 2,3-Dioxygenase 1: Molecular Modeling Studies, Synthesis, and Biological Evaluation. J Med Chem 2016; 59(21):9760-9773.
28. Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 2007; 21(2):353-355.
29. Su C, Zhang P, Liu J, Cao Y. Erianin inhibits indoleamine 2, 3-dioxygenase -induced tumor angiogenesis. Biomed Pharmacother 2017; 88:521-528.
30. Banzola I, Mengus C, Wyler S, Hudolin T, Manzella G, Chiarugi A, et al. Expression of Indoleamine 2,3-Dioxygenase Induced by IFN-gamma and TNF-alpha as Potential Biomarker of Prostate Cancer Progression. Front Immunol 2018; 9:1051.
31. Theate I, van Baren N, Pilotte L, Moulin P, Larrieu P, Renauld JC, et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol Res 2015; 3(2):161-172.
32. Nelp MT, Kates PA, Hunt JT, Newitt JA, Balog A, Maley D, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci U S A 2018; 115(13):3249-3254.
33. Bilir C, Sarisozen C. Indoleamine 2,3-dioxygenase (IDO): Only an enzyme or a checkpoint controller? Journal of Oncological Sciences 2017; 3(2):52-56.
34. Pertovaara M, Raitala A, Juonala M, Lehtimaki T, Huhtala H, Oja SS, et al. Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the Cardiovascular Risk in Young Finns Study. Clin Exp Immunol 2007; 148(1):106-111.
35. Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer 2015; 3:51.
36. Wei L, Zhu S, Li M, Li F, Wei F, Liu J, et al. High Indoleamine 2,3-Dioxygenase Is Correlated With Microvessel Density and Worse Prognosis in Breast Cancer. Front Immunol 2018; 9:724.
37. Carvajal-Hausdorf DE, Mani N, Velcheti V, Schalper KA, Rimm DL. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer 2017; 5(1):81.
38. Nam SJ, Kim S, Kwon D, Kim H, Kim S, Lee E, et al. Prognostic implications of tumor-infiltrating macrophages, M2 macrophages, regulatory T-cells, and indoleamine 2,3-dioxygenase-positive cells in primary diffuse large B-cell lymphoma of the central nervous system. Oncoimmunology 2018; 7(7):e1442164.
39. Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 2009; 113(11):2394-2401.
40. Yang D, Zhang S, Fang X, Guo L, Hu N, Guo Z, et al. N-Benzyl/Aryl Substituted Tryptanthrin as Dual Inhibitors of Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase. J Med Chem 2019; 62(20):9161-9174.
41. Lanz TV, Williams SK, Stojic A, Iwantscheff S, Sonner JK, Grabitz C, et al. Tryptophan-2,3-Dioxygenase (TDO) deficiency is associated with subclinical neuroprotection in a mouse model of multiple sclerosis. Sci Rep 2017; 7:41271.
42. Dolusic E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, et al. Tryptophan 2,3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J Med Chem 2011; 54(15):5320-5334.
43. Zhang S, Qi F, Fang X, Yang D, Hu H, Huang Q, et al. Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur J Med Chem 2018; 160:133-145.
44. Badawy AA. Kynurenine pathway and human systems. Exp Gerontol 2020; 129:110770.
45. Badawy AA. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938.
46. Gibney SM, Fagan EM, Waldron AM, O'Byrne J, Connor TJ, Harkin A. Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int J Neuropsychopharmacol 2014; 17(6):917-928.
47. Hoffmann D, Pilotte L, Stroobant V, Van den Eynde BJ. Induction of tryptophan 2,3-dioxygenase expression in human monocytic leukemia/lymphoma cell lines THP-1 and U937. Int J Tryptophan Res 2019; 12:1178646919891736.
48. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frederick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2012; 109(7):2497-2502.
49. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478(7368):197-203.
50. Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, et al. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer 2020; 122(1):30-44.
51. Kesarwani P, Prabhu A, Kant S, Kumar P, Graham SF, Buelow KL, et al. Tryptophan Metabolism Contributes to Radiation-Induced Immune Checkpoint Reactivation in Glioblastoma. Clin Cancer Res 2018; 24(15):3632-3643.
52. Salter M, Hazelwood R, Pogson CI, Iyer R, Madge DJ. The effects of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat. Biochem Pharmacol 1995; 49(10):1435-1442.
53. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. The New England journal of medicine 2010; 363(8):711-723.
54. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England journal of medicine 2010; 363(5):411-422.
55. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England journal of medicine 2011; 364(26):2517-2526.
56. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol 2006; 24:175-208.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top