(3.237.97.64) 您好!臺灣時間:2021/03/03 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍賜濱
研究生(外文):LAN, CI-BIN
論文名稱:彈性佈署邊緣設備以建構無線工業物聯網環境
論文名稱(外文):Flexible Deployment of Edge Devices to Construct Wireless Environment of Industrial Internet of Things
指導教授:林育儒黃欽印黃欽印引用關係
指導教授(外文):LIN, YU–JUHUANG, CHIN-YIN
口試委員:邱顯俊黃欽印林育儒李淑芬
口試委員(外文):CHIOU, SHIAN JIUNHUANG, CHIN-YINLIN, YU–JULI, SHU FEN
口試日期:2020-06-29
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:工業物聯網無線邊緣設備霧端伺服器開放應用架構
外文關鍵詞:Industrial Internet of ThingsWireless Edge DevicesFog ServerOpen Application Architecture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以物聯網、大數據以及虛實整合系統為技術基礎的第四次工業革命正在改變著現有的製造模式。工業4.0的主要概念是將製造過程中引入物聯網並垂直整合集成虛實整合系統,以解決現有集中和分層控制系統無法快速響應不可預測的變化,以及在面對局部故障時卻異常脆弱的問題。現階段工廠在自動化轉型邁向智能化的進程中,多數以導入智能邊緣設備輔助機台智慧化,在成本及效益之間達到平衡,其面對的主要問題有設備間通訊協議或傳輸的資料形態不同導致無法有效運用;各自獨立管理無法連結等問題。進而在系統的延展性及重組性方面產生問題無法實現未來工廠所需的功能及應用。
本研究通過設計無線邊緣設備EDWIoT,並搭配霧端伺服器,希望以此建立一個涵蓋設備聯網、匯集資料、管理與分析應用等功能為一體的高效系統。其中研究架構由實體層、網路及管理層和應用層組成。實體層包含由PLC控制的模擬產線作為資料來源,由本研究設計之邊緣設備來擷取PLC的資料,並使用Wi-Fi連線上傳至霧端資料庫;網路及管理層包含霧端主機NAS架設的網路伺服器及資料庫,管理各類基於網頁的應用及偵測實時數據觸發的相關的運算資源;應用層則通過資料庫的數據設計開發出客製化的應用,包含基於網頁的管理、監控功能,由於其架構基於霧端伺服器所以相較雲端架構將有更快的存取性能及客製化功能。結合基於網頁瀏覽器的應用架構讓使用者能在移動端實時查看設備機台之狀態,另外也有設計輸出霧端控制訊號之邊緣設備如搭配建構可根據實時數據進行推論的專家系統更可達到動態控制的目的。

The fourth industrial revolution based on the Internet of Things, big data and Cyber-Physical Systems is changing the existing manufacturing model. The main concept of Industry 4.0 is to build the Internet of Things in the manufacturing process and integrate Cyber-Physical Systems. Try to solve the problems that the centralized control system is unable to respond quickly to unpredictable changes, and is fragile for small failures. A Industrial Internet is with interconnected elements of cyber and physical worlds. However, the interconnection relies on the success of communication among the equipment, sensors, controllers with different data and communication standards. These problems reduce the extensibility and reorganization of the entire manufacturing system.
This research designs wireless edge devices and using fog management platform which hope to build an efficient system that integrates functions such as device networking, data collection, management and analysis applications. The architecture consists of three layers: physical layer, network and management layer and application layer. The physical layer contains the production line controlled by PLC as the data source. The edge devices designed in this study captures the PLC data and uploading it to the fog database using Wi-Fi connection. The network and management layer contains web servers and databases set up by the NAS. Which deploy browser -based applications and manage the computing resources triggered by real-time data. The application layer develops customized applications through the data in the database, including web-based management and monitoring functions. The edge devices transmit the sensing data/control command back and forth with the fog platform. Because the architecture is based on the fog server, it will have better performance than cloud architecture.

摘 要
ABSTRACT
誌謝
目錄
表目錄
圖目錄
第一章 緒論
1.1研究背景與動機
1.2 研究問題與目的
1.3研究流程與步驟
1.4 論文架構
第二章 文獻探討
2.1 工業4.0及其相關技術
2.2 工業物聯網
2.3雲與邊緣層計算架構
第三章 研究方法
3.1 系統架構
3.2 邊緣設備設計
3.3 霧端伺服器軟硬體配置
3.4 霧端伺服器與邊緣設備交互機制
第四章 資料處理及後端應用
4.1 應用服務架構
4.2 開發語言及資料I/O
4.3 應用實例
第五章 結論與未來發展方向
參考文獻


1.Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7), 97-114.
2.Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey Comput. Netw.
3.Baheti, R., & Gill, H. (2011). Cyber-physical systems. The impact of control technology, 12(1), 161-166.
4.Bilal, K., Khalid, O., Erbad, A., & Khan, S. U. (2018). Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Computer Networks, 130, 94-120.
5.Bolic, M., Simplot-Ryl, D., & Stojmenovic, I. (Eds.). (2010). RFID systems: research trends and challenges. John Wiley & Sons.
6.Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access, 6, 6505-6519.
7.Chen, R., Guo, J., & Bao, F. (2014). Trust management for SOA-based IoT and its application to service composition. IEEE Transactions on Services Computing, 9(3), 482-495.
8.Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet of Things journal, 1(4), 349-359.
9.Dutta, J., & Roy, S. (2017, January). IoT-fog-cloud based architecture for smart city: Prototype of a smart building. In 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence (pp. 237-242). IEEE.
10.Flügel, C., & Gehrmann, V. (2008, November). Scientific Workshop 4: Intelligent objects for the Internet of Things: Internet of Things–application of sensor networks in logistics. In European Conference on Ambient Intelligence (pp. 16-26). Springer, Berlin, Heidelberg.
11.Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.
12.Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access, 7, 82721-82743.
13.Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: architecture, key technologies, applications and open issues. Journal of network and computer applications, 98, 27-42.
14.Jazdi, N. (2014, May). Cyber physical systems in the context of Industry 4.0. In 2014 IEEE international conference on automation, quality and testing, robotics (pp. 1-4). IEEE.
15.Kafle, V. P., Fukushima, Y., & Harai, H. (2016). Internet of things standardization in ITU and prospective networking technologies. IEEE Communications Magazine, 54(9), 43-49.
16.Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.
17.Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless networks, 23(1), 23-41.
18.Lin, Z., & Pearson, S. (2013). An inside look at industrial Ethernet communication protocols. White Paper Texas Instruments.
19.Liu, T., & Lu, D. (2012, August). The application and development of IoT. In 2012 International Symposium on Information Technologies in Medicine and Education (Vol. 2, pp. 991-994). IEEE.
20.Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, 4(1), 27-40.
21.Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad hoc networks, 10(7), 1497-1516.
22.Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., ... & Ueda, K. (2016). Cyber-physical systems in manufacturing. Cirp Annals, 65(2), 621-641.
23.Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2016). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1-20.
24.Omoniwa, B., Hussain, R., Javed, M. A., Bouk, S. H., & Malik, S. A. (2018). Fog/edge computing-based IoT (FECIoT): Architecture, applications, and research issues. IEEE Internet of Things Journal, 6(3), 4118-4149.
25.Pan, J., & McElhannon, J. (2017). Future edge cloud and edge computing for internet of things applications. IEEE Internet of Things Journal, 5(1), 439-449.
26.Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010, June). Cyber-physical systems: the next computing revolution. In Design Automation Conference (pp. 731-736). IEEE.
27.Seshia, S. A., Hu, S., Li, W., & Zhu, Q. (2016). Design automation of cyber-physical systems: challenges, advances, and opportunities. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(9), 1421-1434.
28.Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE internet of things journal, 3(5), 637-646.
29.Shu, Z., Wan, J., Li, D., Lin, J., Vasilakos, A. V., & Imran, M. (2016). Security in software-defined networking: Threats and countermeasures. Mobile Networks and Applications, 21(5), 764-776.
30.Stankovic, J. A. (2014). Research directions for the internet of things. IEEE Internet of Things Journal, 1(1), 3-9.
31.Zhang, Y., Liu, H., Su, X., Jiang, P., & Wei, D. (2015). Remote mobile health monitoring system based on smart phone and browser/server structure. Journal of healthcare engineering, 6(4), 717-738.
32.Zhang, Y., Qian, C., Lv, J., & Liu, Y. (2016). Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Transactions on Industrial Informatics, 13(2), 737-747.
33.Zou, C., Wan, J., Chen, M., & Li, D. (2012). Simulation modeling of cyber-physical systems exemplified by unmanned vehicles with WSNs navigation. In Embedded and Multimedia Computing Technology and Service (pp. 269-275). Springer, Dordrecht.


電子全文 電子全文(網際網路公開日期:20250716)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔