[1] Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S. & Kwon, S. U. (2016). Three-dimensional printing: basic principles and applications in medicine and radiology. Korean journal of radiology, 17(2), 182-197.
[2] Konta, A. A., García-Piña, M., & Serrano, D. R. (2017). Personalised 3D printed medicines: which techniques and polymers are more successful?. Bioengineering, 4(4), 79.
[3] Tian, X., Peng, G., Yan, M., He, S., & Yao, R. (2018). Process prediction of selective laser sintering based on heat transfer analysis for polyamide composite powders. International journal of heat and mass transfer, 120, 379-386.
[4] Schmid, M., Amado, A., & Wegener, K. (2014). Materials perspective of polymers for additive manufacturing with selective laser sintering. Journal of materials research, 29(17), 1824-1832.
[5] 洪喬村(2015)。選擇性雷射燒結(SLS)設備之設計分析與製造,國立雲林科技大學機械工程研究所碩士論文。[6] Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D printing and customized additive manufacturing. Chemical reviews, 117(15), 10212-10290.
[7] Dadbakhsh, S., Verbelen, L., Vandeputte, T., Strobbe, D., Van Puyvelde, P., & Kruth, J. P. (2016). Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Physics procedia, 83, 971-980.
[8] Tontowi, A. E., & Childs, T. H. C. (2001). Density prediction of crystalline polymer sintered parts at various powder bed temperatures. Rapid prototyping journal, 7(3), 180-184.
[9] Bourell, D. L., Rosen, D. W., & Leu, M. C. (2014). The roadmap for additive manufacturing and its impact. 3D Printing and additive manufacturing, 1(1), 6-9.
[10] 李欣怡(2000)。聚酯彈性體之合成及性質研究,國立成功大學化學工程研究所碩士論文。[11] 陳家驥(2002),熱塑性聚酯聚醚彈性體製備研究,國立台灣大學化學工程研究所碩士論文。[12] Geoghegan, M., & Krausch, G. (2003). Wetting at polymer surfaces and interfaces. Progress in polymer science, 28(2), 261-302.
[13] Larson, R. G. (1999). The structure and rheology of complex fluids (Vol. 150). New York: Oxford university press.
[14] 洪儀庭(2017)。官能化聚乳酸與聚碳酸酯/聚乳酸合膠改質,東海大學化學工程與材料工程研究所碩士論文。[15] Taylor, G. I. (1934). The formation of emulsions in definable fields of flow. Proceedings of the royal society of london. series A, containing papers of a mathematical and physical character, 146(858), 501-523.
[16] Karam, H. J., & Bellinger, J. C. (1968). Deformation and breakup of liquid droplets in a simple shear field. Industrial & engineering chemistry fundamentals, 7(4), 576-581.
[17] Stegeman, Y. W., Van De Vosse, F. N., & Meijer, H. E. (2002). On the applicability of the Grace curve in practical mixing operations. The canadian journal of chemical engineering, 80(4), 1-6.
[18] Bazhlekov, I. B., Anderson, P. D., & Meijer, H. E. (2006). Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. Journal of colloid and interface science, 298(1), 369-394.
[19] Grace, H. P. (1982). Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chemical engineering communications, 14(3-6), 225-277.
[20] Bousmina, M., Ait-Kadi, A., & Faisant, J. B. (1999). Determination of shear rate and viscosity from batch mixer data. Journal of rheology, 43(2), 415-433.
[22] Wu, S. (1987). Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Polymer engineering & science, 27(5), 335-343.
[23] Shariatpanahi, H., Nazokdast, H., & Hemmati, M. (2003). Dispersed phase particle size in polymer blends: interfacial and rheological effects. Journal of elastomers & plastics, 35(2), 115-131.
[24] Vinogradov, G. V., Protasov, V. P., & Dreval, V. E. (1984). The rheological behavior of flexible-chain polymers in the region of high shear rates and stresses, the critical process of spurting, and supercritical conditions of their movement at T> T g. Rheologica acta, 23(1), 46-61.
[25] Tsebrenko, M. V., Yudin, A. V., Ablazova, T. I., & Vinogradov, G. V. (1976). Mechanism of fibrillation in the flow of molten polymer mixtures. Polymer, 17(9), 831-834.
[26] Elmendorp, J. J., & Van der Vegt, A. K. (1986). A study on polymer blending microrheology: part IV. The influence of coalescence on blend morphology origination. Polymer engineering & science, 26(19), 1332-1338.
[27] Elmendorp, J. J., & Maalcke, R. J. (1985). A study on polymer blending microrheology: part 1. Polymer Engineering & Science, 25(16), 1041-1047.
[28] 殷敬華,韓艷春,安立佳,楊德才,馬耀堂,& 李濱耀.(2004).聚合物共混物:組成與性能 (下卷)。北京:科學出版社。
[29] Goodrich, J. E., & Porter, R. S. (1967). A rheological interpretation of torque‐rheometer data. Polymer engineering & science, 7(1), 45-51.
[30] Geoghegan, M., & Krausch, G. (2003). Wetting at polymer surfaces and interfaces. Progress in polymer science, 28(2), 261-302.
[31] Goodridge, R. D., Tuck, C. J., & Hague, R. J. M. (2012). Laser sintering of polyamides and other polymers. Progress in materials science, 57(2), 229-267.
[32] 陳建源(2000)。塑木複材之流變性質與介面改質之研究,東海大學化學工程研究所碩士論文。[33] Haight, R., Ross, F. M. (2012). Handbook of instrumentation and techniques for semiconductor nanostructure characterization. World scientific.