(44.192.10.166) 您好!臺灣時間:2021/03/05 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇彥嘉
研究生(外文):SU,YAN-JIA
論文名稱:熱塑性聚酯彈性體合膠之分相行為探討
論文名稱(外文):Phase Behavior of Thermoplastic Polyester Elastomer Blends
指導教授:王曄
指導教授(外文):WANG,YEH
口試委員:沈曉復許貫中
口試委員(外文):SHEN,HSIAO-FUHSU,KUAN-CHUNG
口試日期:2020-07-28
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:128
中文關鍵詞:熱塑性聚酯彈性體合膠分相行為
外文關鍵詞:Thermoplastic Polyester ElastomerPolymer BlendsPhase Behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由熔融混煉法製備聚苯乙烯(PS)與熱塑性聚酯彈性(TPEE)之合膠,並討論合膠混煉條件與TPEE分散相型態關係,再以光學顯微鏡及場發式電子顯微鏡(FE-SEM)觀察合膠微結構。由於高分子合膠分相行為尚無完備之理論,因此參考牛頓溶液分相理論。依據其理論在兩相系統中,分散相型態除了受剪切流場影響外,尚受兩相黏度比影響。因此本研究首先以流變儀檢定各種材料在不同剪切率及溫度下黏度比,再與顯微鏡觀察結果比較,確認分散相型態與黏度比之關係。
PS與TPEE之合膠為兩相不相容,而偏光顯微鏡可以分辨出結晶性的TPEE及其型態。曾用不同處理方式之樣品觀察,如:溶劑法、合膠切片、及冷凍斷面,並檢定分散相結構及粒徑分布。結果顯示在實驗範圍內,使用高黏度基材降低合膠黏度比時觀察到分散相粒徑分布較大且有較嚴重拉伸變形,使用較低黏度基材降低合膠黏度比分散相較粒徑較小而分散相顆粒多呈圓形。在較高溫度下提高混煉轉速對縮小粒徑效果較明顯且能減少顆粒變形。TPEE與PS比例3:7分散相為顆粒狀TPEE,而4:6則容易形成共連續相。

Polystyrene(PS)and thermoplastic ester elastomer(TPEE) blends were prepared by melt blending in this study. Investigating the differences of dispersed phase by changing blending conditions. The microstructures and dispersed phases of blends phase were confirmed by optical microscope and field-emission scanning electron microscope(FE-SEM). Because of the theory of polymer blend phase behavior was incomplete. According to the Newtonian solution phase theory, apart from the shear rate, viscosity ratio largely effected the form of phase. The relation between viscosity ratio, shear rate and temperature were tested by rheometers, and verified the relation between the form of dispersed phase between viscosity ratio.
The phase of blends can be confirmed by polarized optical microscope. Various pretreatments were used to prepare specimens of microscope, such as solvent etching method, ultracut, and freeze-fracture. According to the result, larger and deformed TPEE particles were observed at lower viscosity ratio with high viscosity matrix; smaller particles were observed at higher viscosity ratio with lower viscosity matrix. The effect of increasing mixing speed on reducing particle size was more significant at higher temperature. Meanwhile, higher temperature also reduced deformation of particles. Particle-like TPEE dispersed phase were observed at lower content of TPEE(3:7), and co-continuous phase were observed at higher content of TPEE(4:6).

Abstract I
摘要 II
目錄 III
圖目錄 VII
表目錄 XII
壹、緒論 1
1-1 研究背景與動機 1
1-2 研究方法與目的 2
貳、文獻回顧 3
2-1 3D列印技術簡介 3
2-2 選擇雷射燒結技術簡介 4
2-2-1 燒結粉體製備 5
2-2-2 燒結粉體粒徑對成品的影響 9
2-3 燒結粉體材料簡介 12
2-3-1 聚醯胺 12
2-3-2 聚乳酸 13
2-3-3 熱塑性彈性體 13
2-3-4 熱塑性聚酯彈性體 15
2-4 分相行為 18
2-4-1 高分子合膠 18
2-4-2 介面層的形成 20
2-4-3 界面張力 21
2-4-4 兩相系統的分散相變化 21
2-4-5 黏度比、毛細管數Ca對分散相型態之影響 22
2-4-6 塑譜儀的剪切分散 26
2-5 流變性質 28
2-5-1 流變性質概述 28
2-5-3 合膠之流變性質 33
參、實驗材料與方法 36
3-1 實驗材料 36
3-2 合膠製備 37
3-3 熱性質分析 37
3-3-1 熱重分析儀 37
3-3-2 調制式熱示差掃描卡計 37
3-4 流變性質分析 39
3-4-1 旋轉式流變儀 39
3-4-2 毛細管流變儀 39
3-5 微結構觀察及分析 39
3-5-1 光學顯微鏡與樣品製作 39
3-5-2 熱場式場發掃描式電子顯微鏡 (FE-SEM) 42
3-5 實驗儀器總表 44
肆、結果與討論 45
4-1 低黏度基材合膠 45
4-1-1 熱性質分析 45
4-1-2 流變性質分析 47
4-1-3 固定溫度改變轉速 53
4-1-4 固定轉速改變溫度 67
4-1-5 改變組成 69
4-2 中黏度基材合膠 70
4-2-1 熱性質分析 70
4-2-2 流變性質分析 72
4-2-3 固定溫度改變轉速 78
4-2-4 固定轉速改變溫度 92
4-2-5 改變組成 94
4-3 高黏度基材合膠 95
4-3-1 熱性質分析 95
4-3-2 流變性質分析 97
4-3-3 固定溫度改變轉速 103
4-3-4 固定轉速改變溫度 117
4-3-5 改變組成 119
4-3-6 黏度比對分散相粒徑影響 120
伍、結論及未來方向 122
5-1 流變性質與黏度比 122
5-2 塑譜儀混煉 122
5-3 混煉條件對分散相形態影響 122
5-4 基材對分散相形態影響 123
5-5 組成對顆粒分散之影響 124
陸、參考文獻 125


[1] Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S. & Kwon, S. U. (2016). Three-dimensional printing: basic principles and applications in medicine and radiology. Korean journal of radiology, 17(2), 182-197.
[2] Konta, A. A., García-Piña, M., & Serrano, D. R. (2017). Personalised 3D printed medicines: which techniques and polymers are more successful?. Bioengineering, 4(4), 79.
[3] Tian, X., Peng, G., Yan, M., He, S., & Yao, R. (2018). Process prediction of selective laser sintering based on heat transfer analysis for polyamide composite powders. International journal of heat and mass transfer, 120, 379-386.
[4] Schmid, M., Amado, A., & Wegener, K. (2014). Materials perspective of polymers for additive manufacturing with selective laser sintering. Journal of materials research, 29(17), 1824-1832.
[5] 洪喬村(2015)。選擇性雷射燒結(SLS)設備之設計分析與製造,國立雲林科技大學機械工程研究所碩士論文。
[6] Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D printing and customized additive manufacturing. Chemical reviews, 117(15), 10212-10290.
[7] Dadbakhsh, S., Verbelen, L., Vandeputte, T., Strobbe, D., Van Puyvelde, P., & Kruth, J. P. (2016). Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Physics procedia, 83, 971-980.
[8] Tontowi, A. E., & Childs, T. H. C. (2001). Density prediction of crystalline polymer sintered parts at various powder bed temperatures. Rapid prototyping journal, 7(3), 180-184.
[9] Bourell, D. L., Rosen, D. W., & Leu, M. C. (2014). The roadmap for additive manufacturing and its impact. 3D Printing and additive manufacturing, 1(1), 6-9.
[10] 李欣怡(2000)。聚酯彈性體之合成及性質研究,國立成功大學化學工程研究所碩士論文。
[11] 陳家驥(2002),熱塑性聚酯聚醚彈性體製備研究,國立台灣大學化學工程研究所碩士論文。
[12] Geoghegan, M., & Krausch, G. (2003). Wetting at polymer surfaces and interfaces. Progress in polymer science, 28(2), 261-302.
[13] Larson, R. G. (1999). The structure and rheology of complex fluids (Vol. 150). New York: Oxford university press.
[14] 洪儀庭(2017)。官能化聚乳酸與聚碳酸酯/聚乳酸合膠改質,東海大學化學工程與材料工程研究所碩士論文。
[15] Taylor, G. I. (1934). The formation of emulsions in definable fields of flow. Proceedings of the royal society of london. series A, containing papers of a mathematical and physical character, 146(858), 501-523.
[16] Karam, H. J., & Bellinger, J. C. (1968). Deformation and breakup of liquid droplets in a simple shear field. Industrial & engineering chemistry fundamentals, 7(4), 576-581.
[17] Stegeman, Y. W., Van De Vosse, F. N., & Meijer, H. E. (2002). On the applicability of the Grace curve in practical mixing operations. The canadian journal of chemical engineering, 80(4), 1-6.
[18] Bazhlekov, I. B., Anderson, P. D., & Meijer, H. E. (2006). Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. Journal of colloid and interface science, 298(1), 369-394.
[19] Grace, H. P. (1982). Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chemical engineering communications, 14(3-6), 225-277.
[20] Bousmina, M., Ait-Kadi, A., & Faisant, J. B. (1999). Determination of shear rate and viscosity from batch mixer data. Journal of rheology, 43(2), 415-433.
[22] Wu, S. (1987). Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Polymer engineering & science, 27(5), 335-343.
[23] Shariatpanahi, H., Nazokdast, H., & Hemmati, M. (2003). Dispersed phase particle size in polymer blends: interfacial and rheological effects. Journal of elastomers & plastics, 35(2), 115-131.
[24] Vinogradov, G. V., Protasov, V. P., & Dreval, V. E. (1984). The rheological behavior of flexible-chain polymers in the region of high shear rates and stresses, the critical process of spurting, and supercritical conditions of their movement at T> T g. Rheologica acta, 23(1), 46-61.
[25] Tsebrenko, M. V., Yudin, A. V., Ablazova, T. I., & Vinogradov, G. V. (1976). Mechanism of fibrillation in the flow of molten polymer mixtures. Polymer, 17(9), 831-834.
[26] Elmendorp, J. J., & Van der Vegt, A. K. (1986). A study on polymer blending microrheology: part IV. The influence of coalescence on blend morphology origination. Polymer engineering & science, 26(19), 1332-1338.
[27] Elmendorp, J. J., & Maalcke, R. J. (1985). A study on polymer blending microrheology: part 1. Polymer Engineering & Science, 25(16), 1041-1047.
[28] 殷敬華,韓艷春,安立佳,楊德才,馬耀堂,& 李濱耀.(2004).聚合物共混物:組成與性能 (下卷)。北京:科學出版社。
[29] Goodrich, J. E., & Porter, R. S. (1967). A rheological interpretation of torque‐rheometer data. Polymer engineering & science, 7(1), 45-51.
[30] Geoghegan, M., & Krausch, G. (2003). Wetting at polymer surfaces and interfaces. Progress in polymer science, 28(2), 261-302.
[31] Goodridge, R. D., Tuck, C. J., & Hague, R. J. M. (2012). Laser sintering of polyamides and other polymers. Progress in materials science, 57(2), 229-267.
[32] 陳建源(2000)。塑木複材之流變性質與介面改質之研究,東海大學化學工程研究所碩士論文。
[33] Haight, R., Ross, F. M. (2012). Handbook of instrumentation and techniques for semiconductor nanostructure characterization. World scientific.

電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔