1.Angerbauer, C., Siebenhofer, M., Mittelbach, M., and Guebitz, G.M. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99, 3051-3056.
2.劉懿嫻 (2014). 以粗乾油做為碳源探討利用氣舉式發酵槽培養Rhodotorula glutinis 生產β-胡蘿蔔素及微生物油脂之可行性。. 東海大學化學工程與材料工程所碩士論文.3.Venkata Subhash, G., and Venkata Mohan, S. (2011). Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102, 9286-9290.
4.Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy 34, 1-5.
5.Cortes, M.A.L.R.M., and de Carvalho, C.C.C.R. (2015). Effect of carbon sources on lipid accumulation in Rhodococcus cells. Biochemical Engineering Journal 94, 100-105.
6.Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P. (1998). Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report. (; National Renewable Energy Lab., Golden, CO. (US)), p. Medium: ED; Size: 325 pages.
7.Lotero, E., Lopez, D. E., Suwannakarn, K., Bruce, D. A., Goodwin, Jr. J. G. (2005). Synthesis of Biodiesel via Acid Catalysis. Industrial and Engineering Chemistry Research 44: 5353-5363.
8.Jaarin, K., Masbah, N., and Kamisah, Y. (2018). Heated Oil and Its Effect on Health. In Food Quality: Balancing Health and Disease. pp. 315-337.
9.Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86, 807-815.
10.Madigan, M. T., Martinko, J. M., & Parker, J. (1997). Brock biology of microorganisms (Vol. 11). Upper Saddle River, NJ: Prentice hall.
11.Nakama, Y. (2017). Surfactants. In Cosmetic Science and Technology. pp. 231-244.
12.Jia, H., Lian, P., Leng, X., Han, Y., Wang, Q., Jia, K., Niu, X., Guo, M., Yan, H., and Lv, K. (2019). Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery. Fuel 258.
13.Garcia, M.T., Campos, E., Marsal, A., and Ribosa, I. (2008). Fate and effects of amphoteric surfactants in the aquatic environment. Environ Int 34, 1001-1005.
14.Huang, X.F., Wang, Y.H., Shen, Y., Peng, K.M., Lu, L.J., and Liu, J. (2019). Using non-ionic surfactant as an accelerator to increase extracellular lipid production by oleaginous yeast Cryptococcus curvatus MUCL 29819. Bioresour Technol 274, 272-280.
15.Ghafourian, T., Nokhodchi, A., and Kaialy, W. (2015). Surfactants as Penetration Enhancers for Dermal and Transdermal Drug Delivery. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum, N. Dragicevic and H.I. Maibach, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 207-230.
16.Macrae, A. R. (1983). Lipase-catalyzed interesterification of oils and fats. Journal of the American Oil Chemists’ Society, 60(2Part1), 291–294.
17.Susumu, O., Mieko, I., & Yoshio, T. (1979). Synthesis of various kinds of esters by four microbial lipases. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 575(1), 156–165.
18.Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19(8), 627–662.
19.Hasan, F., Shah, A.A., and Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology 39, 235-251.
20.Shibukawa, M., Ichikawa, R., Baba, T., Sakamoto, R., Saito, S., and Oguma, K. (2008). Separation selectivity of aqueous polyethylene glycol-based separation systems: DSC, LC and aqueous two-phase extraction studies. Polymer 49, 4168-4173.
21.Riedl, W., and Raiser, T. (2008). Membrane-supported extraction of biomolecules with aqueous two-phase systems. Desalination 224, 160-167.
22.Pereira, J.F.B., Freire, M.G., and Coutinho, J.A.P. (2020). Aqueous two-phase systems: Towards novel and more disruptive applications. Fluid Phase Equilibria 505.
23.Carvalho, T., Finotelli, P.V., Bonomo, R.C.F., Franco, M., and Amaral, P.F.F. (2017). Evaluating aqueous two-phase systems for Yarrowia lipolytica extracellular lipase purification. Process Biochemistry 53, 259-266.
24.Duarte, A.W.F., Lopes, A.M., Molino, J.V.D., Pessoa, A., and Sette, L.D. (2015). Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Separation and Purification Technology 156, 215-225.
25.Christophe, G., Kumar, V., Nouaille, R., Gaudet, G., Fontanille, P., Pandey, A., … Larroche, C. (2012). Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Brazilian Archives of Biology and Technology, 55(1), 29–46.
26.Subramaniam, R., Dufreche, S., Zappi, M., and Bajpai, R. (2010). Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37, 1271-1287.
27.Xue, F., Miao, J., Zhang, X., Luo, H., and Tan, T. (2008). Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99, 5923-5927.
28.Khayati, G., and Alizadeh, S. (2013). Extraction of lipase from Rhodotorula glutinis fermentation culture by aqueous two-phase partitioning. Fluid Phase Equilibria 353, 132-134.
29.Zhang, Z., Zhang, X., and Tan, T. (2014). Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol 157, 149-153.
30.王乙安 (2020). 纖維素基因轉殖之紅酵母菌培養與β-胡蘿蔔素生產之研究. 東海大學化學工程與材料工程學系碩士論文.31.吳森源 (2011). 台梗9號米糠酯酶/脂肪酶織純化及生化特性研究。. 朝陽科技大學生化科技研究所碩士論文.32.Maza, D.D., Vinarta, S.C., Su, Y., Guillamon, J.M., and Aybar, M.J. (2020). Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J Biotechnol 310, 21-31.
33.Liu, Y., Wang, Y., Liu, H., and Zhang, J. (2015). Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresour Technol 180, 32-39.
34.Yen, H.-W., Hu, C.-Y., and Liang, W.-S. (2019). A cost efficient way to obtain lipid accumulation in the oleaginous yeast Rhodotorula glutinis using supplemental waste cooking oils (WCO). Journal of the Taiwan Institute of Chemical Engineers 97, 80-87.
35.Saenge, C., Cheirsilp, B., Suksaroge, T.T., and Bourtoom, T. (2011). Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry 46, 210-218.
36.Yen, H.W., Yang, Y.C., and Yu, Y.H. (2012). Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. J Biosci Bioeng 114, 453-456.
37.Hatzinikolaou, D. G., Kourentzi, E., Stamatis, H., Christakopoulos, P., Kolisis, F. N., Kekos, D., & Macris, B. J. (1999). A novel lipolytic activity of Rhodotorula glutinis cells: Production, partial characterization and application in the synthesis of esters. Journal of Bioscience and Bioengineering, 88(1), 53–56.
38.Taskin, M., Ucar, M.H., Unver, Y., Kara, A.A., Ozdemir, M., and Ortucu, S. (2016). Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology 8, 97-103.
39.Large, K. P., Mirjalili, N., Peacock, M. O. L. M., Zormpaidis, V., Walsh, M., Cavanagh, M. E., … Ison, A. P. (1999). Lipase activity in Streptomycetes. Enzyme and Microbial Technology, 25(7), 569–575.
40.Geluk, M. A., Norde, W., Van Kalsbeek, H. K. A. I., & Van’t Riet, K. (1992). Adsorption of lipase from Candida rugosa on cellulose and its influence on lipolytic activity. Enzyme and Microbial Technology, 14(9), 748–754.
41.鄭晉安 (2017). 黏紅酵母菌由之萃取與酸催化轉酯製成之研究探討。. 東海大學化學工程與材料工程所碩士論文.
42.陳儷娟 (2013). 探討共培養黏紅酵母菌與柵藻對菌體生長與油脂累積之影響。. 東海大學化學工程與材料工程所碩士論文.43.梁惟翔 (2017). 探討以海水與粗甘油作為培養基對於高油脂酵母菌之Rhodotorula glutinis之生長。. 東海大學化學工程與材料工程所碩士論文.44.余依環 (2012). 以工業廢棄物粗甘油與酒槽水作為培養基探討Rhodotorula glutinis的生長影響。. 東海大學化學工程與材料工程所碩士論文.