跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫心慈
研究生(外文):SUN, SIN-CIH
論文名稱:單核苷酸多態性和偶氮類色素電化學分析方法之研發與應用
論文名稱(外文):Development and Application of Electroanalytical Methods for Single Nucleotide Polymorphisms and Azo Colourants
指導教授:莊旻傑
指導教授(外文):CHUANG, MIN-CHIEH
口試委員:顧野松徐詮亮黃景帆翁于晴
口試委員(外文):GU, YE-SONGHSU, CHUAN-LIANGHUANG, JING-FANGWENG, YU-CHING
口試日期:2020-05-15
學位類別:博士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:120
外文關鍵詞:Electroanalytical MethodsSingle Nucleotide PolymorphismsAzo ColourantsTartrazineSunset Yellow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
運用電化學分析方法分別開發具疾病生物指標(biomarker)性的單核苷酸多態性和食品安全相關之偶氮類人工色素的感測平台。上述兩種分析物使用固定化的生物分子(immobilized biomolecules)結合傳感器(transducers),分別為去氧核醣核酸(DNA)及氯化血紅素(hemin)修飾於電極表面進行分析,接續將兩種分析方法分為兩個部分進行介紹。第一部分將感測機制設計為模塊化組成,以DNA作為建構結構化(structured)感測機制的元件建立於金電極表面,辨別目標分析物的單核苷酸多態性。當結構「完全互補」時產生訊號,反之,當含錯配鹼基則無法形成結構便沒有訊號;模塊化的優點包含:(i)更換目標物後平台無須全部重新設計。(ii)運用修飾亞甲基藍DNA作為外加訊號源,具良好親和力之外,不同分析物無須另外設計具修飾的特異性訊號探針。實際試驗多種目標分析物及真實樣品─肺結核桿菌,證實該分析平台皆可有效鑑別單核苷酸多態性,偵測極限達300 pM。第二部分以簡單的電聚合方式將氯化血紅素修飾於玻碳電極表面,氯化血紅素已知能作為一些還原反應(如氧氣、過氧化氫和過氧化物等)的生物催化材,即利用氯化血紅素的卟啉環與偶氮化合物表現出ππ堆積相互作用的能力,以及中央三價鐵離子靜電吸引偶氮化合物帶負電荷的磺酸鹽基團的能力,從而促進了對偶氮類色素的電還原反應,選用兩種食品常用的偶氮類色素酒石黃(TT)和日落黃(SY),偵測極限分別為360 nM及384 nM,同時對電子轉移數、反應級數、擴散係數和塔菲爾斜率(Tafel slope)等反應參數與機制進行探討。分別針對以上兩種電化學生物感測器探討其真實應用性,如可重複性、穩定性、干擾物測試等。
Herein, we were using two immobilized biomolecules on the electrode, such as deoxyribonucleic acid (DNA) and hemin, separately, with electrochemical transducers to detect two critical topics, the first part is single nucleotide polymorphism (SNP) detection, and the second part is azo-colorants detection. SNP is a DNA sequence variation occurring with a single nucleotide, with a frequency of at least 1% in a population's random set of individuals. SNPs showing association with potential risk to identify the biological pathways leading to the diseases and offering the possible interruption opportunities, the advantage of the SNPs as predictive biomarkers for the detection targets. Besides, artificial dyes derived from petroleum are employed in thousands of foods to provide a colorful identity to customers. Still, azo-colorants have the potential to raises diseases and cancer risk. Tartrazine (Yellow 5, or TT), and Sunset yellow (Yellow 6, or SY) contain benzene, a human and animal carcinogen through metabolism to form the aromatic compound and produced free radical, but which permitted in low for safe levels in foods.
For SNP detection, the 4-way junction (4WJ) structured DNA platform built on the surface of a gold electrode named Multi-MeB output electrochemical sensor (MMOES) and the addition of a modular design. Modular design that subdivides a system into smaller parts, which can be independently created, modified, replaced, or exchanged between different systems. On the contrary, when there is a mismatch, the 4WJ structure cannot be formed, then no signal is performed. Some advantages include: (i) After replacing the target, the platform does not need to be all redesigned. (ii) Using methylene blue modified DNA as an external signal source, it has an excellent practical test of multiple target analytes and real samples-tuberculosis tuberculosis, confirming that the analysis platform can effectively identify single nucleotide polymorphisms. Furthermore, the limit of detection (LOD) of MMOES is 300 pM.
Moreover, a simple electropolymerization method to modify hemin on the surface of the glassy carbon electrode is used for azo-colorants detection. Hemin is known to be a biocatalytic material for some reduction reactions (such as oxygen, hydrogen peroxide, and peroxide, etc.). The hemin-modified electrode showed the ability of central ferric ion (Fe2+), which have electrostatically attracted the azo-colorants with its negative sulfonate groups to promote the sensitivity. The LODs of the hemin-modified electrode are 360 nM (TT) and 384 nM (SY). Finally, we estimated some reaction parameters include the electrons transfer number, diffusion coefficient, Tafel slope, and supposed reduction mechanism of azo-colorants. Also, the real applications of the above two electrochemical biosensors are considered, respectively, such as repeatability, stability, and interference. 

論文口試委員審定書 II
謝誌 III
中文摘要 IV
Abstract V
發表的期刊論文 VII
縮寫表 IX
目錄 XI
圖目錄 XIV
表目錄 XVI

第一章 緒論 1
1.1 電化學分析方法 1
1.1.1 伏安法 1
1.1.2 電量分析法 3
1.1.3 電位分析法 4
1.1.4 電導分析法 5
1.1.5 極譜分析法 5
1.1.6 電解分析法 6
1.2 生物感測器的定義與其發展歷史回顧 7
1.3 生物感測器的類型 9
1.4 核酸雜合為基礎的單核苷酸多態性電化學生物感測器 11
1.4.1 DNA構形與雜合反應 11
1.4.2 線性核酸探針 13
1.4.3 髮夾型核酸探針 15
1.4.4 形成「連接複合體」之核酸探針 17
1.4.5 鏈置換核酸探針 19

第一部分 開發模塊化通用檢測具單核苷酸多態性的電化學生物感測器
第二章 前言 21
2.1 單核苷酸多態性對於疾病感測的重要性 21
2.2 目前單核苷酸多態性電化學生物感測器發展 23
2.3 研究目標 25
第三章 實驗材料與方法 26
3.1 藥品與試劑 26
3.2 實驗儀器設備 27
3.3 去氧核醣核酸序列 29
3.4 實驗方法 31
3.4.1 熱熔解曲線分析設計感測機制序列 31
3.4.2 電極製備 31
3.4.3 電化學感測 32
3.4.4 聚丙烯醯胺凝膠電泳 32
3.4.5 真實樣品結核桿菌基因片段處理 33
3.4.6 確認結核桿菌基因片段感測機制 34
3.4.7 干擾物測試 (溶氧與人類血清) 35
3.4.8 重複性測試 35
3.4.9 電極覆蓋率 36
第四章 結果與討論 37
4.1 設計感測機制 (熱熔解曲線分析) 37
4.2 選擇性與電化學訊號放大 42
4.3 最佳化測試 44
4.4重複性測試 46
4.5電極表面覆蓋率 48
4.6感測二級結構分析物 51
4.7干擾物測試 (溶氧與人類血清) 53
4.8應用真實樣品結核桿菌基因片段檢測 55
4.9結論 57
第二部分 應用氯化血紅素修飾玻碳電極催化感測偶氮類人工色素
第五章 前言 58
5.1 偶氮類人工色素對人體潛在危害 58
5.2 探討目前人工色素應用與電化學檢測方式 60
5.2.1 酒石黃 60
5.2.2 日落黃 63
5.3 研究目標 65
第六章 實驗材料與方法 67
6.1 藥品與試劑 67
6.2 實驗儀器設備 68
6.3 實驗方法 70
6.3.1 電聚合氯化血紅素修飾電極製備 70
6.3.2 檢測氯化血紅素的電化學特徵峰 70
6.3.3 偶氮化合物電化學量測 70
6.3.4 模擬飲料樣品的製備 71
6.3.5 極化曲線電化學量測 71
第七章 結果與討論 72
7.1 電聚合氯化血紅素 72
7.2 電催化還原偶氮化合物 75
7.3 最佳化測試 78
7.4 同時檢測檸檬黃與日落黃與模擬真實樣品檢測 81
7.5 重複性和電極儲存時間測試 83
7.6 電子轉移數 84
7.7 反應級數與擴散係數 (極化曲線) 86
7.8 塔菲爾圖 (Tafel plot) 90
7.9 反應機制探討 (催化還原偶氮化合物) 92
7.10 結論 94
第八章 總結與未來展望 95
第九章 參考文獻 96
1.Zoski, C. G., Handbook of electrochemistry. Elsevier: 2006.
2.Kissinger, P.; Heineman, W. R., Laboratory Techniques in Electroanalytical Chemistry, revised and expanded. CRC press: 2018.
3.Sharon, N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 2007, 282, 2753-2764.
4.Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 2009, 25, 901-905.
5.Boon, E. M.; Ceres, D. M.; Drummond, T. G.; Hill, M. G.; Barton, J. K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nat. biotechnol. 2000, 18, 1096-1100.
6.Alberts, B., Essential cell biology. Garland Science: 2010.
7.Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids. Nature 1953, 171, 737-738.
8.Felsenfeld, G.; Miles, H. T. The physical and chemical properties of nucleic acids. Annu. Rev. Biochem. 1967, 36, 407-448.
9.Voet, D.; Voet, J. G.; Pratt, C. W., Fundamentals of biochemistry: life at the molecular level. John Wiley & Sons: 2016.
10.Cho, Y. K., et al. Characterization of DNA immobilization and subsequent hybridization using in situ quartz crystal microbalance, fluorescence spectroscopy, and surface plasmon resonance. J. Colloid Interf. Sci. 2004, 278, 44-52.
11.Abad-Valle, P.; Fernandez-Abedul, M. T.; Costa-Garcia, A. DNA single-base mismatch study with an electrochemical enzymatic genosensor. Biosens. Bioelectron. 2007, 22, 1642-1650.
12.Zhu, J.; Wei, B.; Yuan, Y.; Mi, Y. UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation. Nucleic acids Res. 2009, 37, 2164-2175.
13.Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.; Pierce, N. A. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 2011, 32, 170-173.
14.Pheeney, C. G.; Barton, J. K. DNA Electrochemistry with Tethered Methylene Blue. Langmuir 2012, 28, 7063-7070.
15.Kelley, S. O.; Holmlin, R. E.; Stemp, E. D. A.; Barton, J. K. Photoinduced electron transfer in ethidium-modified DNA duplexes: Dependence on distance and base stacking. J. Am. Chem. Soc. 1997, 119, 9861-9870.
16.Boon, E. M.; Ceres, D. M.; Drummond, T. G.; Hill, M. G.; Barton, J. K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nat. Biotechnol. 2000, 18, 1096-1100.
17.Stancescu, M.; Fedotova, T. A.; Hooyberghs, J.; Balaeff, A.; Kolpashchikov, D. M. Nonequilibrium Hybridization Enables Discrimination of a Point Mutation within 5-40 degrees C. J. Am. Chem. Soc. 2016, 138, 13465-13468.
18.Huang, T. J.; Liu, M. S.; Knight, L. D.; Grody, W. W.; Miller, J. F.; Ho, C. M. An electrochemical detection scheme for identification of single nucleotide polymorphisms using hairpin-forming probes. Nucleic Acids Res. 2002, 30.
19.Fan, C. H.; Plaxco, K. W.; Heeger, A. J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9134-9137.
20.Zhang, J.; Lao, R.; Song, S.; Yan, Z.; Fan, C. Design of an oligonucleotide-incorporated nonfouling surface and its application in electrochemical DNA sensors for highly sensitive and sequence-specific detection of target DNA. Anal. Chem. 2008, 80, 9029-9033.
21.Kjällman, T. H.; Peng, H.; Soeller, C.; Travas-Sejdic, J. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal. Chem. 2008, 80, 9460-9466.
22.Park, J.-Y.; Park, S.-M. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 2009, 9, 9513-9532.
23.Miranda-Castro, R.; De-Los-Santos-Alvarez, P.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.; Tunon-Blanco, P. Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Anal. Chem. 2007, 79, 4050-4055.
24.Lucarelli, F.; Tombelli, S.; Minunni, M.; Marrazza, G.; Mascini, M. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal. Chim. Acta 2008, 609, 139-159.
25.Gerasimova, Y. V.; Hayson, A.; Ballantyne, J.; Kolpashchikov, D. M. A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences. Chembiochem 2010, 11, 1762-1768.
26.Sun, S.-C.; Dou, H.-Y.; Chuang, M.-C.; Kolpashchikov, D. M. Multi-labeled electrochemical sensor for cost-efficient detection of single nucleotide substitutions in folded nucleic acids. Sens. Actuators B Chem. 2019, 287, 569-575.
27.Huang, S. Y.; Chang, J. R.; Liao, Y. C.; Dou, H. Y.; Chuang, M. C. Simultaneous detections of genetic fragment and single nucleotide mutation with a three-tiered output for tuberculosis diagnosis. Anal. Chim. Acta 2018, 1007, 1-9.
28.Zhang, J.; Chen, J. H.; Chen, R. C.; Chen, G. N.; Fu, F. F. Sequence-specific detection of trace DNA via a junction-probe electrochemical sensor employed template-enhanced hybridization strategy. Biosens. Bioelectron. 2009, 25, 815-819.
29.Zhang, J.; Wu, X.; Chen, P.; Lin, N.; Chen, J.; Chen, G.; Fu, F. Electrochemical genotyping and detection of single-nucleotide polymorphisms based on junction-probe containing 2'-deoxyinosine. Chem. Commun. 2010, 46, 6986-6988.
30.Martin, F. H.; Castro, M. M.; Aboul-ela, F.; Tinoco Jr, I. Base pairing involving deoxyinosine: implications for probe design. Nucleic acids Res. 1985, 13, 8927-8938.
31.Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605-608.
32.Gao, Z. F.; Ling, Y.; Lu, L.; Chen, N. Y.; Luo, H. Q.; Li, N. B. Detection of Single-Nucleotide Polymorphisms Using an ON–OFF Switching of Regenerated Biosensor Based on a Locked Nucleic Acid-Integrated and Toehold-Mediated Strand Displacement Reaction. Anal. Chem. 2014, 86, 2543-2548.
33.Rieder, M. J.; Taylor, S. L.; Clark, A. G.; Nickerson, D. A. Sequence variation in the human angiotensin converting enzyme. Nat. Genet. 1999, 22, 59-62.
34.Altshuler, D., et al. A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061-1073.
35.Jaing, R.; Duan, J.; Windemuth, A.; Stephens, J. C.; Judson, R.; Xu, C. Genome-wide evaluation of the public SNP databases. Pharmacogenomics 2003, 4, 779-789.
36.Riva, A.; Kohane, I. S. A SNP-centric database for the investigation of the human genome. BMC bioinform. 2004, 5, 33.
37.Hung, R. J., et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008, 452, 633-637.
38.Easton, D. F., et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447, 1087-1093.
39.Kim, H.-K.; Rasnik, I.; Liu, J.; Ha, T.; Lu, Y. Dissecting metal ion–dependent folding and catalysis of a single DNAzyme. Nat. Chem. Biol. 2007, 3, 763-768.
40.Kim, H. C., et al. A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast Cancer Res. 2012, 14, R56.
41.Gudmundsson, J., et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 2007, 39, 631-637.
42.Yeager, M., et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 2007, 39, 645-649.
43.Eeles, R. A., et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 2009, 41, 1116-1121.
44.Mead, S., et al. Genetic risk factors for variant Creutzfeldt–Jakob disease: a genome-wide association study. Lancet Neurol. 2009, 8, 57-66.
45.Zhang, F. R., et al. Genomewide Association Study of Leprosy. N. Engl. J. Med. 2009, 361, 2609-2618.
46.Chang, J. C.; Waikan, Y. Beta-O Thalassemia, a Nonsense Mutation in Man. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 2886-2889.
47.Davila, S., et al. Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat. Genet. 2010, 42, 772-776.
48.Maris, J. M., et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N. Engl. J. Med. 2008, 358, 2585-2593.
49.Capasso, M., et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat. Genet. 2009, 41, 718-723.
50.Ricks‐Santi, L. J.; Nie, J.; Marian, C.; Ochs‐Balcom, H. M.; Trevisan, M.; Edge, S. B.; Freudenheim, J. L.; Shields, P. G. BRCA1 polymorphisms and breast cancer epidemiology in the Western New York exposures and breast cancer (WEB) study. Genet. Epidemiol. 2013, 37, 504-511.
51.Millan, K. M.; Mikkelsen, S. R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem. 1993, 65, 2317-2323.
52.Fan, C.; Plaxco, K. W.; Heeger, A. J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9134-9137.
53.Slinker, J. D.; Muren, N. B.; Renfrew, S. E.; Barton, J. K. DNA charge transport over 34 nm. Nat. Chem. 2011, 3, 228-233.
54.Campos, R.; Kotlyar, A.; Ferapontova, E. E. DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags. Langmuir 2014, 30, 11853-11857.
55.Wang, W.-J.; Li, J.-J.; Rui, K.; Gai, P.-P.; Zhang, J.-R.; Zhu, J.-J. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal. Chem. 2015, 87, 3019-3026.
56.Gasparac, R.; Taft, B. J.; Lapierre-Devlin, M. A.; Lazareck, A. D.; Xu, J. M.; Kelley, S. O. Ultrasensitive electrocatalytic DNA detection at two-and three-dimensional nanoelectrodes. J. Am. Chem. Soc. 2004, 126, 12270-12271.
57.Papadopoulou, E.; Goodchild, S. A.; Cleary, D. W.; Weller, S. A.; Gale, N.; Stubberfield, M. R.; Brown, T.; Bartlett, P. N. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons. Anal. Chem. 2015, 87, 1605-1612.
58.Papadopoulou, E.; Gale, N.; Thompson, J.; Fleming, T.; Brown, T.; Bartlett, P. Specifically horizontally tethered DNA probes on Au surfaces allow labelled and label-free DNA detection using SERS and electrochemically driven melting. Chem. Sci. 2016, 7, 386-393.
59.Gunderson, K. L.; Steemers, F. J.; Lee, G.; Mendoza, L. G.; Chee, M. S. A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet. 2005, 37, 549-554.
60.Kolpashchikov, D. M. A binary DNA probe for highly specific nucleic Acid recognition. J. Am. Chem. Soc. 2006, 128, 10625-10628.
61.Labib, M.; Ghobadloo, S. M.; Khan, N.; Kolpashchikov, D. M.; Berezovski, M. V. Four-Way Junction Formation Promoting Ultrasensitive Electrochemical Detection of MicroRNA. Anal. Chem. 2013, 85, 9422-9427.
62.Kolpashchikov, D. M. Binary Probes for Nucleic Acid Analysis. Chem. Rev. 2010, 110, 4709-4723.
63.Wu, J.; Campuzano, S.; Halford, C.; Haake, D. A.; Wang, J. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification. Anal. Chem. 2010, 82, 8830-8837.
64.Mills, D. M.; Calvo-Marzal, P.; Pinzon, J. M.; Armas, S.; Kolpashchikov, D. M.; Chumbimuni-Torres, K. Y. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences. Electroanalysis 2017, 29, 873-879.
65.Lilley, D. M. J. Structures of helical junctions in nucleic acids. Q. Rev. Biophys. 2000, 33, 109-159.
66.Herne, T. M.; Tarlov, M. J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 1997, 119, 8916-8920.
67.Steel, A. B.; Herne, T. M.; Tarlov, M. J. Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 1998, 70, 4670-4677.
68.Varani, L.; Hasegawa, M.; Spillantini, M. G.; Smith, M. J.; Murrell, J. R.; Ghetti, B.; Klug, A.; Goedert, M.; Varani, G. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8229-8234.
69.Varani, L.; Hasegawa, M.; Spillantini, M. G.; Smith, M. J.; Murrell, J. R.; Ghetti, B.; Klug, A.; Goedert, M.; Varani, G. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl. Acad. Sci. U.S.A. 1998, 96, 8229-8234.
70.Ahlström, L.-H.; Eskilsson, C. S.; Björklund, E. Determination of banned azo dyes in consumer goods. TrAC Trends Anal. Chem. 2005, 24, 49-56.
71.Guo, Y.; Yue, Q.; Gao, B. Probing the molecular mechanism of CI Acid red 73 binding to human serum albumin. Environ. Toxicol. Pharmacol. 2010, 30, 45-51.
72.Balakrishnan, V. K.; Shirin, S.; Aman, A. M.; de Solla, S. R.; Mathieu-Denoncourt, J.; Langlois, V. S. Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, Disperse Yellow 7. Chemosphere 2016, 146, 206-215.
73.Guo, Y.; Yue, Q.; Gao, B. Molecular docking study investigating the possible mode of binding of CI Acid Red 73 with DNA. Int. J. Biol. Macromol. 2011, 49, 55-61.
74.Amin, K.; Hameid II, H. A.; Elsttar, A. A. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem. Toxicol. 2010, 48, 2994-2999.
75.Khayyat, L.; Essawy, A.; Sorour, J.; Soffar, A. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. PeerJ 2017, 5, e3041.
76.Soares, B. M.; ARAÚJO, T. M. T.; RAMOS, J. A. B.; Pinto, L. C.; Khayat, B. M.; Bahia, M. D. O.; Montenegro, R. C.; BURBANO, R. M. R.; Khayat, A. S. Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow. Anticancer Res. 2015, 35, 1465-1474.
77.Rowe, K. S.; Rowe, K. J. Synthetic food coloring and behavior: a dose response effect in a double-blind, placebo-controlled, repeated-measures study. J. Pediatr. 1994, 125, 691-698.
78.Schab, D. W.; Trinh, N.-H. T. Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. J. Dev. Behav. Pediatr. 2004, 25, 423-434.
79.McCann, D., et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560-1567.
80.EFSA, A. Panel (Panel on Food Additives and Nutrient Sources added to Food).(2014). Scientific opinion on the reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110). EFSA J. 2014, 12, 3765.
81.Lopez-de-Alba, P. L.; Lopez-Martinez, L.; De-Leon-Rodriguez, L. M. Simultaneous determination of synthetic dyes tartrazine, allura red and sunset yellow by differential pulse polarography and partial least squares. A multivariate calibration method. Electroanal. 2002, 14, 197-205.
82.Song, Y. Z.; Xu, J. M.; Lv, J. S.; Zhong, H.; Ye, Y.; Xie, J. M. Electrochemical reduction of tartrazine at multi-walled carbon nanotube-modified pyrolytic graphite electrode. Russ. J. Phys. Chem. 2012, 86, 303-310.
83.Zhang, W. K.; Liu, T.; Zheng, X. J.; Huang, W. S.; Wan, C. D. Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode. Colloid Surface B 2009, 74, 28-31.
84.Abu Shawish, H. M.; Abu Ghalwa, N.; Saadeh, S. M.; El Harazeen, H. Development of novel potentiometric sensors for determination of tartrazine dye concentration in foodstuff products. Food Chem. 2013, 138, 126-132.
85.Rodriguez, J. A.; Juarez, M. G.; Galan-Vidal, C. A.; Miranda, J. M.; Barrado, E. Determination of Allura Red and Tartrazine in Food Samples by Sequential Injection Analysis Combined with Voltammetric Detection at Antimony Film Electrode. Electroanal. 2015, 27, 2329-2334.
86.Karimi, M. A.; Aghaei, V. H.; Nezhadali, A.; Ajami, N. Graphitic Carbon Nitride as a New Sensitive Material for Electrochemical Determination of Trace Amounts of Tartrazine in Food Samples. Food Anal. Method 2018, 11, 2907-2915.
87.Yang, X. F.; Qin, H. B.; Gao, M. M.; Zhang, H. J. Simultaneous detection of Ponceat 4R and tartrazine in food using adsorptive stripping voltammetry on an acetylene black nanoparticle-modified electrode. J. Sci. Food Agric. 2011, 91, 2821-2825.
88.Medeiros, R. A.; Lourencao, B. C.; Rocha, R. C.; Fatibello, O. Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode. Talanta 2012, 97, 291-297.
89.Tang, Y.; Wang, Y.; Liu, G.; Sun, D. Determination of sunset yellow and tartrazine using silver and poly (L-cysteine) composite film modified glassy carbon electrode. Indian J. Chem. 2016, 55, 298-303.
90.Jiang, S. H.; Xu, J. F.; Xu, P. D.; Liu, L. J.; Chen, Y.; Qiao, C. S.; Yang, S. F.; Sha, Z. L.; Zhang, J. K. A Novel Molecularly Imprinted Sensor for Direct Tartrazine Detection. Anal. Lett. 2014, 47, 323-330.
91.Asadpour-Zeynali, K.; Aleshi, M. Electrochemical Modification of Glassy Carbon Electrode by Bismuth-chitosan Nanosheets for Electrocatalytic Reduction and Determination of Tartrazine. Port. Electrochimica Acta 2014, 32, 369-379.
92.Silva, M. L. S.; Garcia, M. B. Q.; Lima, J. L. F. C.; Barrado, E. Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system. Talanta 2007, 72, 282-288.
93.Medeiros, R. A.; Lourencao, B. C.; Rocha, R. C.; Fatibello, O. Flow injection simultaneous determination of synthetic colorants in food using multiple pulse amperometric detection with a boron-doped diamond electrode. Talanta 2012, 99, 883-889.
94.Pogacean, F.; Coros, M.; Mirel, V.; Magerusan, L.; Barbu-Tudoran, L.; Vulpoi, A.; Stefan-van Staden, R. I.; Pruneanu, S. Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection. Microchem. J. 2019, 147, 112-120.
95.Liang, Z. X.; Song, H. Y.; Liao, S. J. Hemin: A Highly Effective Electrocatalyst Mediating the Oxygen Reduction Reaction. J. Phys. Chem. C 2011, 115, 2604-2610.
96.Mimica, D.; Zagal, J. H.; Bedioui, F. Electroreduction of nitrite by hemin, myoglobin and hemoglobin in surfactant films. J. Electroanal. Chem. 2001, 497, 106-113.
97.Valentini, F.; Cristofanelli, L.; Carbone, M.; Palleschi, G. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2- detection. Electrochim. Acta 2012, 63, 37-46.
98.de Groot, M. T.; Merkx, M.; Wonders, A. H.; Koper, M. T. M. Electrochemical reduction of NO by hemin adsorbed at pyrolitic graphite. J. Am. Chem. Soc. 2005, 127, 7579-7586.
99.Collman, J. P.; Kaplun, M.; Sunderland, C. J.; Boulatov, R. Electrocatalytic reduction of ROOH by iron porphyrins. J. Am. Chem. Soc. 2004, 126, 11166-11167.
100.Nakashima, N.; Tokunaga, T.; Owaki, H.; Murakami, H.; Sagara, T. Catalytic reduction of organohalides at hemin and hemin-imidazole polymer films on pyrolytic graphite electrodes. Colloid Surface A 2000, 169, 163-170.
101.Xue, T., et al. Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angew. Chem. Int. Edit. 2012, 51, 3822-3825.
102.Peteu, S. F.; Bose, T.; Bayachou, M. Polymerized hemin as an electrocatalytic platform for peroxynitrite's oxidation and detection. Anal. Chim. Acta 2013, 780, 81-88.
103.Bedioui, F.; Trevin, S.; Albin, V.; Guadalupe, M.; Villegas, G.; Devynck, J. Design and characterization of chemically modified electrodes with iron (III) porphyrinic-based polymers: Study of their reactivity toward nitrites and nitric oxide in aqueous solution. Anal. Chim. Acta 1997, 341, 177-185.
104.Macor, K.; Spiro, T. Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins. J. Am. Chem. Soc. 1983, 105, 5601-5607.
105.Liu, P.-Y.; Hsu, C.-C.; Chuang, M.-C. Hemin-mediated construction of iridium oxide with superior stability for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 2959-2971.
106.Macor, K. A.; Spiro, T. G. Porphyrin Electrode Films Prepared by Electrooxidation of Metalloprotoporphyrins. Journal of Materials Chemistry 1983, 105, 5601-5607.
107.Younathan, J. N.; Wood, K. S.; Meyer, T. J. Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorg. Chem. 1992, 31, 3280-3285.
108.Engstrom, R. C.; Strasser, V. A. Characterization of electrochemically pretreated glassy carbon electrodes. Anal. Chem. 1984, 56, 136-141.
109.Dekanski, A.; Stevanovic, J.; Stevanovic, R.; Nikolic, B. Z.; Jovanovic, V. M. Glassy carbon electrodes I. Characterization and electrochemical activation. Carbon 2001, 39, 1195-1205.
110.Soliman, A. B.; Abdel-Samad, H. S.; Rehim, S. S. A.; Hassan, H. H. Surface functionality and electrochemical investigations of a graphitic electrode as a candidate for alkaline energy conversion and storage devices. Sci. Rep. 2016, 6, 22056.
111.Gan, T.; Sun, J. Y.; Cao, S. Q.; Gao, F. X.; Zhang, Y. X.; Yang, Y. Q. One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim. Acta 2012, 74, 151-157.
112.Gomez, M.; Arancibia, V.; Rojas, C.; Nagles, E. Adsorptive Stripping Voltammetric Determination of Tartrazine and Sunset Yellow in Gelatins and Soft Drink Powder in the presence of Cetylpyridinium Bromide. Int. J. Electrochem. Sci. 2012, 7, 7493-7502.
113.Xi, P. B.; Liang, Z. X.; Liao, S. J. Stability of hemin/C electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energ. 2012, 37, 4606-4611.
114.Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications. 2nd ed.; JOHN WILEY & SONS, INC.: New York, 2001, p. 594.
115.Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications, 2nd Edition. 2nd ed.; JOHN WILEY & SONS, INC.: New York, 2001, p. 236.
116.Vesovic, V.; Anastasijevic, N.; Adzic, R. R. Rotating disk electrode: A re-examination of some kinetic criteria with a special reference to oxygen reduction. J. Electroanal. Chem. Interf. Electrochem. 1987, 218, 53-63.
117.Stewart, K. L.; Gewirth, A. A. Mechanism of Electrochemical Reduction of Hydrogen Peroxide on Copper in Acidic Sulfate Solutions. Langmuir 2007, 23, 9911-9918.
118.Ye, X.; Du, Y.; Lu, D.; Wang, C. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine. Anal. Chim. Acta 2013, 779, 22-34.
119.Asadpour-Zeynali, K.; Mollarasouli, F. Bismuth and Bismuth-Chitosan modified electrodes for determination of two synthetic food colorants by net analyte signal standard addition method. Cent. Eur. J. Chem. 2014, 12, 711-718.
120.Mandic, Z.; Nigovic, B.; Simunic, B. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids. Electrochim. Acta 2004, 49, 607-615.


電子全文 電子全文(網際網路公開日期:20250612)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊