(44.192.10.166) 您好!臺灣時間:2021/03/05 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹宜儒
研究生(外文):CHAN,YI-JU
論文名稱:金屬相二硫化鉬/聚苯胺-還原氧化石墨烯三元複合材料作為鋰離子電池負極的應用
論文名稱(外文):Application of Ternary Composite Material Consisting of 1T Phase Molybdenum Disulfide/Polyaniline-Reduced Graphene Oxide as Negative Electrode for Lithium Ion Battery
指導教授:林宗吾
指導教授(外文):LIN,TSUNG-WU
口試委員:莊旻傑林正裕
口試委員(外文):CHUANG,MIN-CHIEHLIN,JENG-YU
口試日期:2020-07-24
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:鋰離子電池
外文關鍵詞:Lithium Ion Battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成出包含金屬相二硫化鉬/聚苯胺/還原氧化石墨烯(1T-MoS2-PANi-rGO)的三元複合材並應用於鋰離子電池之負極材料。透過電化學剝離法製成的1T-MoS2電極,在電壓範圍0.01-3V、電流密度 0.1A/g下,其電容值為903.9 mAh/g,但是在電流密度0.5A/g下經過100圈充放電後只能維持初始電容量的18.65%。為了改善循環穩定性,我們混合PANi-rGO和1T-MoS2。隨著PANi-rGO的比例上升,電容值有下降的趨勢,此三元複合材料在1T-MoS2:PANi-rGO重量比例為8:2時,在電流密度0.1A/g下電容值為812.2 mAh/g,但是在經過充放電100圈後,維持初始的電容量至64.4%。為了得到更好的循環穩定性,我們在1M LiPF6 (EC/DEC=50/50 vol%)電解液中添加氟代碳酸乙烯酯(FEC),經過不同比例測試後,我們發現添加10% FEC具有最佳的循環穩定性,在經過100圈能維持初始電容量至72.7%。此外,電解液添加10%FEC的三元複合材在操作電壓0.01-3V、電流密度提升至1 A/g下,經過充放電連續循環400圈後,能維持初始電容量的54.4%。
In this study, a ternary composite material containing metallic molybdenum disulfide/polyaniline/reduced graphene oxide (1T-MoS2/PANi-rGO) was synthesized and used as a negative electrode material for lithium-ion batteries. The 1T-MoS2 electrode made by the electrochemical stripping method has a capacitance value of 903.9 mAh/g at a voltage range of 0.01-3V and a current density of 0.1A/g, but after 100 cycles of charging at a current density of 0.5A/g Only 18.65% of the initial capacity can be maintained after discharge. In order to improve the cycle stability, we mix PANi-rGO and 1T-MoS2. As the ratio of PANi-rGO increases, the capacitance value tends to decrease. When the weight ratio of 1T-MoS2:PANi-rGO is 8:2, the capacitance value of this ternary composite is 812.2 mAh at a current density of 0.1A/g /g, but after 100 cycles of charge and discharge, the initial capacitance is maintained to 64.4%. In order to obtain better cycle stability, we added fluoroethylene carbonate (FEC) to the electrolyte of 1M LiPF6 (EC/DEC=50/50 vol%). After testing in different proportions, we found that adding 10% FEC has The best cycle stability can maintain the initial capacitance to 72.7% after 100 cycles. In addition, the ternary composite with 10% FEC in the electrolyte can maintain 54.4% of the initial capacitance after 400 cycles of continuous charging and discharging at an operating voltage of 0.01-3V and a current density of 1 A/g.
中文摘要 I
Abstract II
總目錄 III
圖目錄 VI
表目錄 X
致謝 XI
第1章 前言 1
第2章 文獻回顧 3
2-1 電池簡介 3
2-1-1 電池的發展 4
2-1-2 一次電池 4
2-1-3 二次電池 5
2-2 鋰離子電池電化學原理 5
2-2-1 正極材料 6
2-2-2 負極材料 7
2-2-3 隔離膜 7
2-2-4 電解液 7
2-3 層狀結構材料 8
2-3-1石墨烯 9
2-3-2過渡金屬二硫屬化物 12
2-4 聚苯胺 18
2-5 三元複合材料 23
2-6 電解液添加劑 26
2-7 研究動機 31
第3章 實驗方法與分析 32
3-1 電極製備方法 32
3-1-1 電極製備流程 32
3-1-2 電極基材之選擇與前處理 33
3-1-3 製備氧化石墨烯 33
3-1-4 水熱法合成聚苯胺-還原氧化石墨烯 34
3-1-5製備1T-MoS2 34
3-1-6 合成1T-MoS2/聚苯胺-還原氧化石墨烯 35
3-1-7 藥品資訊 36
3-2 電極材料分析 37
3-2-1材料鑑定分析 37
3-2-2拉曼光譜 37
3-2-3表面形貌與結構分析 38
3-2-3 X光光電子能譜儀 39
3-3 電化學測試 40
3-3-1 極片製備 40
3-3-2 鋰電池製作 40
3-3-3 循環伏安曲線量測 41
3-3-4 倍率充放電量測 41
3-3-5 交流阻抗分析 41
第4章 結果與討論 44
4-1 1T相二硫化鉬 44
4-1-1 材料鑑定 44
4-2 PANi-rGO 45
4-2-1 材料鑑定 45
4-2-2 結構鑑定 46
4-3 1T-MoS2/PANi-rGO 49
4-3-1 材料鑑定 49
4-3-2 結構鑑定 53
4-4 合成複合材與比例測試 55
4-4-1複合材具不同比例(1T-MoS2:PANi-rGO)的電化學測試 55
4-4-1-1循環伏安曲線分析及充放電曲線 55
4-4-1-2倍率充放電分析 57
4-4-1-3電化學穩定性分析 59
4-4-1-4交流阻抗分析 62
4-4-2電解液加入添加劑之影響 63
4-4-2-1循環伏安曲線分析 63
4-4-2-2倍率充放電分析 64
4-4-2-3電化學穩定性分析 66
4-4-2-4 循環400圈比較 67
4-4-2-5 電極材料經充放電循環後進行XPS檢測 68
4-4-2-6 電極材料經充放電循環後進行TEM檢測 70
4-5 結語 72
第5章 結論與未來工作 73
第6章 參考資料 74


[1]X. Zha, B. M. Sanchez, P J. Dobson and P. S. Grant, Nanoscale, 2011, 3(3), 839.
[2]綠能趨勢網, 特斯拉購併超級電容公司Maxwell所為何來, 2019.
[3]維基百科-電池
[4]台灣wiki-電池
[5]陳鐘誠, 電池的歷史與原理, 2013
[6]O. Toprakci, H. A.K. Toprakci, L. Ji and X. Zhang, Kona, 2010, No.28.
[7]誰是正極材料的真正超級龍頭股?, 2017.
[8]C. De las Casas and W. Li, J. Power Sources, 2012, 208, 74-85.
[9]四種鋰電池負極材料PK:人工石墨/石墨烯等, 2016
[10]鋰電池隔離膜之應用與安全對策, 世界材料網, 2016.
[11]D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich,E. Zinigrad,L. Asraf, J. S. Gnanaraja and H-K. Kim, Electrochimica. Acta, 2004, 50(2-3),247-254.
[12]鋰離子電池機能性 電解液開發及應用
[13]蘇雅雯, 神奇的二維材料-Graphene與MoS2, 奈米通訊, 第21卷
[14]洪偉修, 世界上最薄的材料--石墨烯, 2019
[15]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett, 2009, 9(1),30-35.
[16]G. Kucinskis, G. Bajars and J. Kleperis, J. Power Sources, 2013, 240,66-79.
[17](a) B. C. Brodie, Ann. Chim. Phys, 1860, 59, 466–472; (b) W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc, 1958, 80, 1339–1340.
[18]S. Pei and H-M. Cheng, Carbon, 2012, 50(9), 3210–3228.
[19]S. Park, R. S. Ruoff, Nat. Nanotechnol, 2009, 4, 217–224.
[20]H. Wang, J. T. Robinson, G. Diankov, H. Dai, J. Am. Chem. Soc. 2010, 132, 3270–3271.
[21]Y. Liang, H. Wang, H. S. Casalongue, Z. Chen, H. Dai, Nano Res. 2010, 3, 701–705.
[22]D. Xiong, X. Li, H. Shan, B. Yan, L. Dong, Y. Cao and D. Li, J. Mater. Chem. C, 3(21), 11376-11386.
[23]G.Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett, 2011, 11(12), 5111–5116.
[24]P. Joensen, R. F. Frindt, S. R. Morrison, Mater. Res. Bull, 1986, 21(4), 457-461.
[25]A. Kuc, Chem. Modell, 2014, 11,1–29.
[26]T. Xiang, Q. Fang, H. Xie, C. Wu, C. Wang, Y. Zhou, D. Liu, S. Chen, A. Khalil,S. Tao, Q. Liu, L. Song, Nanoscale, 2017, 9(21), 6975-6983.
[27]M. Wu, J. Zhan, K. Wu, Z. Li, L. Wang, B. Geng, L. Wang, D. Pan, J. Mater. Chem.A, 2017, 5(27), 14061-14069.
[28]張芫睿、佘瑞琳, 共軛性導電高分子材料技術簡介、導電塑膠聚苯胺的製備和測試, 台灣化學教育, 2019
[29]N. Su, Polymers, 2015, 7(9), 1599-1616.
[30]K. M. Molapo, P. M. Ndangili, R. F. Ajyi, G. Mbambisa, S. M. Mailu, N. Njomo, M. Masikini, P. Baker and E. I. Iwuoha, Int. J. Electrochem. Sci, 2012, 7(12), 11859-11875.
[31]A. G. MacDiarmid, A. J. Epstein, Synth Met, 1995, 69(1-3), 85-92.
[32]F. Cheng, W. Tang, C. Li, J. Chen, H. Liu, P. Shen and S. Dou, Chem. Eur. J, 2006, 12(11), 3082–3088.
[33]C. Zhang, Z Wang, Z Guo and X. W. (D.) Lou, ACS Appl. Mater. Interfaces, 2012,4(7), 3765–3768.
[34]L.Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang and O. G. Schmidt, Adv. Mater,2012 , 25(8), 1180–1184.
[35]L.R. Hu, Y.M. Ren, H.X. Yang, Q. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 14644-14652
[36]H. Liu, F. Zhang, W. Li, X. Zhang, C.S. Lee, W. Wang and Y. Tang, Electrochim. Acta, 2015, 167, 132–138.
[37]L. Yuan, J. Wang, S.Y. Chewa, J. Chen, Z.P. Guo, L. Zhao, K. Konstantinov and H. K. Liu, J. Power Sources, 2007, 174, 1183–1187.
[38]Y. Zhao, Y. Huang, Q. F. Wang, X. Y. Wang and M. Zong, Ceram. Int, 2013, 39, 1741.
[39]S. Han, Y. Ai, Y. Tang, J. Jianga and D. Wu, RSC Adv, 2015, 5(117) , 96660–96664.
[40]D. Xie, D. H. Wang, W. J. Tang, X. H. Xia, Y. J. Zhang, X. L. Wang, C. D. Gu and J. P. Tu, J. Power Sources, 307, 510–518.
[41]C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, Nat. Chem, 5(12), 1042–1048.
[42]Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge, X. Chen, Angew. Chem. Int. Ed. Engl, 2018, 57(14), 3656–3660.
[43]L. Xia, S. Lee, Y. Jiang, Y. Xia, G. Z. Chen and Z. Liu, ACS Omega, 2017, 2(12), 8741–8750.
[44]Q.-C. Zhuang, X. –Y. Qiu, S.-D. Xu, Y. –H. Qiang and S. –G. Sun, Lithium Ion Battery – New Developments, InTech, 2012.
[45]M. Acerce, D. Voiry and M. Chhowalla, Nat. Nanotechnol, 10(4), 313–318.
[46]R. Wang, M. Han, Q. Zhao, Z. Ren, X. Guo, C.Xu, N. Hu and L. Lu, Sci. Rep, 2017,7(1).
[47]B. Z. Lin, X. K. Pei, J. F. Zhang, G. H. Han, Zhen Li, P. D. Liu and J. H. Wu,
J. Mater. Chem. C, 2004, 14(13), 2001.
[48]J. Wang , Z. C. Wu, K. H. Hu, X. Y. Chen and H. B. Yin, J. Alloys Compd. 2015, 619, 38–43.
[49]J. Chao, L. Yang, J. Liu, R. Hu, and M. Zhu, J. Phys. Chem. C, 2018, 122(15), 8128–8136.
[50]S. Golczaka, A. Kanciurzewska, M. Fahlman, K. Langer and J. J.Langer, 2008, Solid State Ion, 179(39), 2234–2239.
[51]Y. R. Choi, Y. G. Yoon, K. S. Choi, J. H. Kang, Y. S. Shim, Y. H. Kim, H. J. Chang, J. H. Lee, C. R. Park, S. Y. Kim, H W. Jang, Carbon Lett, 2015, 91, 178–187.
[52]P. Ahuja, S. K. Ujjain, I. Arora and M. Samim, ACS Omega, 2018, 3(7), 7846–7855.
[53]P. Yu, X. Zhao, Z. Huang, Y. Li and Q. Zhang, J. Mater. Chem. A, 2014, 2, 14413-14420.
[54]T. Xiang, Q. Fang, H. Xie, C. Wu, C. Wang, Y. Zhou, D. Liu, S. Chen, A. Khalil, S. Tao, Q. Liu and L. Song, Nanoscale, 2017, 9(21), 6975–6983.
[55]D. S. Sun and R. Schlogl , ChemSusChem, 2010, 3, 136-168.
[56]J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao and C. He, ACS Nano, 2015, 9(4), 3837–3848.
[57]J. W. Jeon, S. R. Kwon, and J. L. Lutkenhaus, J. Mater. Chem. A, 2015, 3(7), 3757–3767.
[58]J. W. Jeon, S. R. Kwon, and J. L. Lutkenhaus, RSC Adv, 2015, 5(20), 14994–15001.
[59]H. Liu, F. Zhang, W. Li, X. Zhang, C. S. Lee, W. Wang and Y. Tang, Electrochim. Acta, 2015, 167, 132–138.
[60]L. R. Hu, Y. M. Ren, H. X. Yang and Q. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 14644-14652.
[61]C. F. Zhang, Z. Y. Wang, Z. P. Guo and X. W. Lou, ACS Appl. Mater. Interfaces, 2012, 4, 3765-3768.
[62]F. Zhou, S. Xin, H. W. Liang, L. T. Song and S. H. Yu, Angew. Chem. Int. Ed, 2014, 126(43), 11552-11556.
[63]K. Chang and W. X. Chen, ChemComm, 2011, 47, 4252-4254..
[64]K. Chang, W. X. Chen, ACS Nano, 2011, 5, 4720-4728.
[65]J. Z. Wang, L. Lu, M. Lotya, J. N. Coleman, S. L. Chou, H. K. Liu, A. I. Minett, J. Chen, Adv. Energy Mater, 2013, 3, 798-805.
[66]L. Hu, Y. Ren, H. Yang, and Qun Xu, ACS Appl. Mater. Interfaces, 2014, 6, 16, 14644–14652.
[67]Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge and X. Chen, Angew. Chem. Int. Ed. Engl, 2018, 57(14), 3656–3660.
[68]K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng and K. J. Stevenson, Chem. Mater, 2015, 27(16), 5531–5542.

電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔