(3.236.175.108) 您好!臺灣時間:2021/02/28 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃仲晨
研究生(外文):HUANG,ZHONG-CHEN
論文名稱:氧化銥輔助製備氧化鋅-氧化銥複合陽極應用於光電催化裂解水之研究
論文名稱(外文):Iridium Oxide-Mediated Fabrication of ZnO-IrOx Photoanode for Efficient Photoelectrochemical Water Splitting
指導教授:莊旻傑
指導教授(外文):CHUANG,MIN-CHIEH
口試委員:簡世森黃景帆
口試委員(外文):JIAN,SHI-SENHUANG,JING-FANG
口試日期:2020-07-21
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:82
中文關鍵詞:氧化鋅氧化銥電絮凝析氧反應光電催化裂解水
外文關鍵詞:Zinc oxideIridium oxideElectroflocculationOxygen evolution reactionPhotoelectrochemical water splitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
太陽能和風能等自然資源被認為是提供安全,清潔和可持續能源以滿足本世紀全球需求的潛在資源。然而,自然能源間歇性地出現並且需要有效且經濟的存儲解決方案,水分解是將間歇性能量轉換為氫能的一種有吸引力的解決方案,其中太陽能是通過太陽能電池或光電化學電池收集的,以間接或直接的方式通過驅動水電解來產氫。為了有效地進行水分解,減輕氧釋放反應(Oxygen Evolution Reaction OER)的阻力非常重要,穩定的OER催化劑與高度光激發的光催化劑相匹配,有望實現可行且可擴展的儲能技術。
為了實現這一目標,將氧化銥(IrOx)和氧化鋅(ZnO)分別在FTO上電絮凝,分別充當電催化劑和光催化劑,以進行光電化學水分解,在電絮凝期間,以高氧化電位施加FTO,其中進行水氧化以產生質子,從而將含金屬的前體酸化為金屬氧化物,所製備的氧化銥-氧化鋅(IrOx-ZnO)複合物在AM 1.5光照下可有效驅動水分解反映。為了深入了解光電催化水氧化反應(OER),通過掃描電子顯微鏡、穿透射電子顯微鏡對氧化銥-氧化鋅複合物進行了表徵,其特徵在於前體濃度,電絮凝時間,退火溫度等,還通過紫外光-可見光吸收光譜和光致發光光譜法評價了氧化銥-氧化鋅複合物的電子-電洞對的帶隙。
The nature resources such as solar and wind are considered as the potential sources to offer safe, clean, and sustainable energy to meet the global demand in the present century. However, the nature energy appears intermittently and requires efficient and economic storage solutions. Water splitting is an attractive solution to convert the intermittent energy to hydrogen energy,1 in which solar energy is harvested by either solar- or photoelectrochemical- cells to drive water electrolysis with hydrogen production in indirect or direct routes. To have efficient water splitting, mitigating the resistance of oxygen evolution reaction (OER) is of significance. A stable OER catalyst suiting with a highly photoexcited photocatalyst is anticipated to enable viable and scalable energy storage technology. Aiming this goal, iridium oxide (IrOx) and zinc oxide (ZnO) were electroflocculated on FTO sequentially acting as electro- and photo-catalyst, respectively, to exert photoelectrochemical water splitting. During the electroflocculation, FTO was applied at high oxidation potentials, in which water oxidation was carried out to yield proton substantially to acidize metal-containing precursors to metal oxides. The as-prepared IrOx-ZnO hybrid was demonstrated to drive water splitting efficiently under AM 1.5 illuminations. To gain an insight into understanding the photocatalytic OER, the IrOx-ZnO hybrid was characterized by scanning electron microscopy, transmission electron microscopy, as functions of concentration of precursor, period of electrofloccuation, annealing temperature, etc. Band gap and recombination rate of electron-hole pair of the crystalline ZnO and IrOx-ZnO hybrid were also evaluated by UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy.
謝誌
中文摘要
目錄
圖目錄
表目錄
第一章 緒論
1.1氫能源,分離式能源系統
1.2光電解水產生氫氣
1.3光電解水陽極材料
1.4氧化鋅光觸媒的特性及製備
1.5電絮凝方法製備氧化銥
第二章 材料與方法
2.1實驗藥品與試劑
2-2實驗儀器
2-3合成含銥前驅物
2-4合成含鋅前驅物
2-5電極製備
2-6沉積物鑑定
2-7光電催化水氧化反應測試
第三章 結果與討論
3.1室溫Zn(OH)₄²⁻前驅物合成原理
3.2氧化銥-氧化鋅複合物電極製備
3.3氧化銥-氧化鋅複合物電極光電催化反應
3.4製備氧化銥-氧化鋅複合物電極條件優化
3.5複合物形貌之影響
3.6複合物結晶性之影響
3.7鍛燒溫度對複合物能隙之影響
3.8鍛燒溫度對氧空位之影響
第四章 結論

1.邢春礼; 费颖; 韩俊; 赵广播; 秦裕琨, 氢能与燃料电池能源系统. 節能技術, 27(2009), pp. 287-c3.
2.A. Colmenar-Santos; C. Reino-Rio; D. Borge-Diez; E. Collado-Fernández, Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renewable and Sustainable Energy Reviews, 59(2016), pp. 1130-1148.
3.A. Ehsan; Q. Yang, Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy, 210(2018), pp. 44-59.
4.A. Fujishima; K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 238(1972), pp. 37-38.
5.M.G. Walter; E.L. Warren; J.R. McKone; S.W. Boettcher; Q. Mi; E.A. Santori; N.S. Lewis, Solar water splitting cells. Chemical reviews, 110(2010), pp. 6446-6473.
6.K. Takanabe, Solar water splitting using semiconductor photocatalyst powders. In Solar Energy for Fuels, Springer: 2015; pp 73-103.
7.K. Takanabe, Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catalysis, 7(2017), pp. 8006-8022.
8.D. Bae; T. Pedersen; B. Seger; M. Malizia; A. Kuznetsov; O. Hansen; I. Chorkendorff; P.C. Vesborg, Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution. Energy & Environmental Science, 8(2015), pp. 650-660.
9.Z. Chen; H.N. Dinh; E. Miller, Photoelectrochemical water splitting. Springer: 2013.
10.W. Shockley; W. Read Jr, Statistics of the recombinations of holes and electrons. Physical review, 87(1952), pp. 835.
11.T. Le Bahers; M. Rérat; P. Sautet, Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. The Journal of Physical Chemistry C, 118(2014), pp. 5997-6008.
12.F.E. Osterloh, Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Letters, 2(2017), pp. 445-453.
13.H. Gerischer, A mechanism of electron hole pair separation in illuminated semiconductor particles. The Journal of Physical Chemistry, 88(1984), pp. 6096-6097.
14.H. Yoneyama, Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Critical Reviews in Solid State and Material Sciences, 18(1993), pp. 69-111.
15.N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier: 1998.
16.T. Shinagawa; A.T. Garcia‐Esparza; K. Takanabe, Mechanistic switching by hydronium ion activity for hydrogen evolution and oxidation over polycrystalline platinum disk and platinum/carbon electrodes. ChemElectroChem, 1(2014), pp. 1497-1507.
17.J. Jin; K. Walczak; M.R. Singh; C. Karp; N.S. Lewis; C. Xiang, An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy & Environmental Science, 7(2014), pp. 3371-3380.
18.H.M. Tabaei; M. Kazemeini; M. Fattahi, Preparation and characterization of visible light sensitive nano titanium dioxide photocatalyst. Scientia Iranica, 19(2012), pp. 1626-1631.
19.N.M. Mahmoodi; M. Arami; J. Zhang, Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon). Journal of Alloys and Compounds, 509(2011), pp. 4754-4764.
20.H. Wang; W. Chen; J. Zhang; C. Huang; L. Mao, Nickel nanoparticles modified CdS–A potential photocatalyst for hydrogen production through water splitting under visible light irradiation. International Journal of Hydrogen Energy, 40(2015), pp. 340-345.
21.O. Amiri; M. Salavati-Niasari; S.M. Hosseinpour-Mashkani; A. Rafiei; S. Bagheri, Cadmium selenide@ sulfide nanoparticle composites: facile precipitation preparation, characterization, and investigation of their photocatalyst activity. Materials science in semiconductor processing, 27(2014), pp. 261-266.
22.C. Wang; R. Sun; X. Li; Y. Sun; P. Sun; F. Liu; G. Lu, Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sensors and Actuators B: Chemical, 204(2014), pp. 224-230.
23.V. Kondalkar; R. Kharade; S. Mali; R. Mane; P. Patil; P. Patil; S. Choudhury; P. Bhosale, Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 73(2014), pp. 290-295.
24.K. Deepa; J. Nagaraju, Development of SnS quantum dot solar cells by SILAR method. Materials science in semiconductor processing, 27(2014), pp. 649-653.
25.K.R. Reddy; N.K. Reddy; R. Miles, Photovoltaic properties of SnS based solar cells. Solar energy materials and solar cells, 90(2006), pp. 3041-3046.
26.Z. Bai; X. Yan; Z. Kang; Y. Hu; X. Zhang; Y. Zhang, Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy, 14(2015), pp. 392-400.
27.Y.-K. Hsu; S.-Y. Fu; M.-H. Chen; Y.-C. Chen; Y.-G. Lin, Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 120(2014), pp. 1-5.
28.F. Ruiz-Ocampo; J. Zapien-Rodríguez; O. Burgara-Montero; E. Escoto-Sotelo; F. Núñez-Pérez; J. Ballesteros-Pacheco, Electrodeposition of Nanostructured ZnO Photoanodes for Their Application in the Oxygen Evolution Reaction. Int. J. Electrochem. Sci, 12(2017), pp. 4898-4914.
29.M. Skompska; K. Zarębska, Electrodeposition of ZnO nanorod arrays on transparent conducting substrates–a review. Electrochimica Acta, 127(2014), pp. 467-488.
30.O. Yayapao; T. Thongtem; A. Phuruangrat; S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. Journal of Alloys and Compounds, 576(2013), pp. 72-79.
31.A.K. Chandiran; M. Abdi-Jalebi; M.K. Nazeeruddin; M. Grätzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS nano, 8(2014), pp. 2261-2268.
32.S. Hernández; D. Hidalgo; A. Sacco; A. Chiodoni; A. Lamberti; V. Cauda; E. Tresso; G. Saracco, Comparison of photocatalytic and transport properties of TiO 2 and ZnO nanostructures for solar-driven water splitting. Physical Chemistry Chemical Physics, 17(2015), pp. 7775-7786.
33.A.B. Djurišić; Y.H. Leung, Optical properties of ZnO nanostructures. small, 2(2006), pp. 944-961.
34.M. Baek; D. Kim; K. Yong, Simple but effective way to enhance photoelectrochemical solar-water-splitting performance of ZnO nanorod arrays: charge-trapping Zn (OH) 2 annihilation and oxygen vacancy generation by vacuum annealing. ACS applied materials & interfaces, 9(2017), pp. 2317-2325.
35.A. Janotti; C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Reports on progress in physics, 72(2009), pp. 126501.
36.D.A. Reddy; R. Ma; T.K. Kim, Efficient photocatalytic degradation of methylene blue by heterostructured ZnO–RGO/RuO2 nanocomposite under the simulated sunlight irradiation. Ceramics International, 41(2015), pp. 6999-7009.
37.W. Gao; Z. Li, ZnO thin films produced by magnetron sputtering. Ceramics International, 30(2004), pp. 1155-1159.
38.L. Damiani; R. Mansano In Zinc oxide thin films deposited by magnetron sputtering with various oxygen/argon concentrations, Journal of Physics-Conference Series, 2012; p 012019.
39.S. Bang; S. Lee; Y. Ko; J. Park; S. Shin; H. Seo; H. Jeon, Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition. Nanoscale research letters, 7(2012), pp. 290.
40.Z.W. Ai; Y. Wu; H. Wu; T. Wang; C. Chen; Y. Xu; C. Liu, Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition. Nanoscale research letters, 8(2013), pp. 1-6.
41.E. Galoppini; J. Rochford; H. Chen; G. Saraf; Y. Lu; A. Hagfeldt; G. Boschloo, Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. The Journal of Physical Chemistry B, 110(2006), pp. 16159-16161.
42.Z. Shi; B. Wu; X. Cai; X. Xia; S. Zhang; W. Yin; H. Wang; J. Wang; X. Dong; Y. Zhang, Photofacilitated controllable growth of ZnO films using photoassisted metal organic chemical vapor deposition. Crystal growth & design, 12(2012), pp. 4417-4424.
43.M.A. Borysiewicz, ZnO as a functional material, a review. Crystals, 9(2019), pp. 505.
44.A. B Djurisic; X. Y Chen; Y. H Leung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials. Recent patents on nanotechnology, 6(2012), pp. 124-134.
45.V.K. Anand; S. Sood; A. Sharma In Characterization of ZnO Thin Film Deposited by Sol‐Gel Process, AIP Conference Proceedings, American Institute of Physics: 2010; pp 399-401.
46.W. Lan; X. Peng; X. Liu; Z. He; Y. Wang, Preparation and properties of ZnO thin films deposited by sol-gel technique. Frontiers of Materials Science in China, 1(2007), pp. 88-91.
47.C. Gu; J. Li; J. Lian; G. Zheng, Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass. Applied surface science, 253(2007), pp. 7011-7015.
48.L. Mentar; O. Baka; M. Khelladi; A. Azizi; S. Velumani; G. Schmerber; A. Dinia, Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 26(2015), pp. 1217-1224.
49.B.E. Prasad; P.V. Kamath; S. Ranganath, Electrodeposition of ZnO coatings from aqueous Zn (NO 3) 2 baths: effect of Zn concentration, deposition temperature, and time on orientation. Journal of Solid State Electrochemistry, 16(2012), pp. 3715-3722.
50.V. Fidelsky; M.C. Toroker, Enhanced water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies. The Journal of Physical Chemistry C, 120(2016), pp. 25405-25410.
51.M.W. Louie; A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society, 135(2013), pp. 12329-12337.
52.M.E. Lyons; S. Floquet, Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1− xO2 electrodes in aqueous acid and alkaline solution. Physical Chemistry Chemical Physics, 13(2011), pp. 5314-5335.
53.Y. Lee; J. Suntivich; K.J. May; E.E. Perry; Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 3(2012), pp. 399-404.
54.V.I. Birss; H. Elzanowska; S. Gottesfeld, Quartz crystal microbalance measurements during oxidation/reduction of hydrous Ir oxide electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 318(1991), pp. 327-333.
55.H. Elzanowska; J. Segal; V. Birss, Complications associated with kinetic studies of hydrous Ir oxide films. Electrochimica acta, 44(1999), pp. 4515-4524.
56.P.-Y. Liu; C.-C. Hsu; M.-C. Chuang, Hemin-mediated construction of iridium oxide with superior stability for the oxygen evolution reaction. Journal of Materials Chemistry A, 5(2017), pp. 2959-2971.
57.T. Nakagawa; C.A. Beasley; R.W. Murray, Efficient electro-oxidation of water near its reversible potential by a mesoporous IrO x nanoparticle film. The Journal of Physical Chemistry C, 113(2009), pp. 12958-12961.
58.H.-Y. Hsiao; M.-C. Chuang, Eliminating Evolved Oxygen through an Electro-flocculation Efficiently Prompts Stability and Catalytic Kinetics of an IrOx· nH2O Colloidal Nanostructured Electrode for Water Oxidation. Electrochimica Acta, 137(2014), pp. 190-196.
59.T. Yoshida; D. Komatsu; N. Shimokawa; H. Minoura, Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin solid films, 451(2004), pp. 166-169.
60.S. Yamabi; H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of materials chemistry, 12(2002), pp. 3773-3778.
61.K.-F. Chow; T.M. Carducci; R.W. Murray, Electronic Conductivity of Films of Electroflocculated 2 nm Iridium Oxide Nanoparticles. Journal of the American Chemical Society, 136(2014), pp. 3385-3387.
62.M. Caglar; S. Ilican; Y. Caglar; F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film. Applied Surface Science, 255(2009), pp. 4491-4496.
63.K. Nishio; Y. Watanabe; T. Tsuchiya, Preparation and properties of electrochromic iridium oxide thin film by sol-gel process. Thin Solid Films, 350(1999), pp. 96-100.
64.V. Pfeifer; T.E. Jones; J.J. Velasco Vélez; C. Massué; R. Arrigo; D. Teschner; F. Girgsdies; M. Scherzer; M.T. Greiner; J. Allan, The electronic structure of iridium and its oxides. Surface and Interface Analysis, 48(2016), pp. 261-273.
65.Y. Yang; Y. Wang; S. Yin, Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Applied Surface Science, 420(2017), pp. 399-406.
66.Q. Liu; F. Wang; H. Lin; Y. Xie; N. Tong; J. Lin; X. Zhang; Z. Zhang; X. Wang, Surface oxygen vacancy and defect engineering of WO 3 for improved visible light photocatalytic performance. Catalysis Science & Technology, 8(2018), pp. 4399-4406.
67.O. Marin; M. Tirado; N. Budini; E. Mosquera; C. Figueroa; D. Comedi, Photoluminescence from c-axis oriented ZnO films synthesized by sol-gel with diethanolamine as chelating agent. Materials Science in Semiconductor Processing, 56(2016), pp. 59-65.

電子全文 電子全文(網際網路公開日期:20250811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔