|
1.邢春礼; 费颖; 韩俊; 赵广播; 秦裕琨, 氢能与燃料电池能源系统. 節能技術, 27(2009), pp. 287-c3. 2.A. Colmenar-Santos; C. Reino-Rio; D. Borge-Diez; E. Collado-Fernández, Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renewable and Sustainable Energy Reviews, 59(2016), pp. 1130-1148. 3.A. Ehsan; Q. Yang, Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy, 210(2018), pp. 44-59. 4.A. Fujishima; K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 238(1972), pp. 37-38. 5.M.G. Walter; E.L. Warren; J.R. McKone; S.W. Boettcher; Q. Mi; E.A. Santori; N.S. Lewis, Solar water splitting cells. Chemical reviews, 110(2010), pp. 6446-6473. 6.K. Takanabe, Solar water splitting using semiconductor photocatalyst powders. In Solar Energy for Fuels, Springer: 2015; pp 73-103. 7.K. Takanabe, Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catalysis, 7(2017), pp. 8006-8022. 8.D. Bae; T. Pedersen; B. Seger; M. Malizia; A. Kuznetsov; O. Hansen; I. Chorkendorff; P.C. Vesborg, Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution. Energy & Environmental Science, 8(2015), pp. 650-660. 9.Z. Chen; H.N. Dinh; E. Miller, Photoelectrochemical water splitting. Springer: 2013. 10.W. Shockley; W. Read Jr, Statistics of the recombinations of holes and electrons. Physical review, 87(1952), pp. 835. 11.T. Le Bahers; M. Rérat; P. Sautet, Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. The Journal of Physical Chemistry C, 118(2014), pp. 5997-6008. 12.F.E. Osterloh, Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Letters, 2(2017), pp. 445-453. 13.H. Gerischer, A mechanism of electron hole pair separation in illuminated semiconductor particles. The Journal of Physical Chemistry, 88(1984), pp. 6096-6097. 14.H. Yoneyama, Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Critical Reviews in Solid State and Material Sciences, 18(1993), pp. 69-111. 15.N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier: 1998. 16.T. Shinagawa; A.T. Garcia‐Esparza; K. Takanabe, Mechanistic switching by hydronium ion activity for hydrogen evolution and oxidation over polycrystalline platinum disk and platinum/carbon electrodes. ChemElectroChem, 1(2014), pp. 1497-1507. 17.J. Jin; K. Walczak; M.R. Singh; C. Karp; N.S. Lewis; C. Xiang, An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy & Environmental Science, 7(2014), pp. 3371-3380. 18.H.M. Tabaei; M. Kazemeini; M. Fattahi, Preparation and characterization of visible light sensitive nano titanium dioxide photocatalyst. Scientia Iranica, 19(2012), pp. 1626-1631. 19.N.M. Mahmoodi; M. Arami; J. Zhang, Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon). Journal of Alloys and Compounds, 509(2011), pp. 4754-4764. 20.H. Wang; W. Chen; J. Zhang; C. Huang; L. Mao, Nickel nanoparticles modified CdS–A potential photocatalyst for hydrogen production through water splitting under visible light irradiation. International Journal of Hydrogen Energy, 40(2015), pp. 340-345. 21.O. Amiri; M. Salavati-Niasari; S.M. Hosseinpour-Mashkani; A. Rafiei; S. Bagheri, Cadmium selenide@ sulfide nanoparticle composites: facile precipitation preparation, characterization, and investigation of their photocatalyst activity. Materials science in semiconductor processing, 27(2014), pp. 261-266. 22.C. Wang; R. Sun; X. Li; Y. Sun; P. Sun; F. Liu; G. Lu, Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sensors and Actuators B: Chemical, 204(2014), pp. 224-230. 23.V. Kondalkar; R. Kharade; S. Mali; R. Mane; P. Patil; P. Patil; S. Choudhury; P. Bhosale, Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 73(2014), pp. 290-295. 24.K. Deepa; J. Nagaraju, Development of SnS quantum dot solar cells by SILAR method. Materials science in semiconductor processing, 27(2014), pp. 649-653. 25.K.R. Reddy; N.K. Reddy; R. Miles, Photovoltaic properties of SnS based solar cells. Solar energy materials and solar cells, 90(2006), pp. 3041-3046. 26.Z. Bai; X. Yan; Z. Kang; Y. Hu; X. Zhang; Y. Zhang, Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy, 14(2015), pp. 392-400. 27.Y.-K. Hsu; S.-Y. Fu; M.-H. Chen; Y.-C. Chen; Y.-G. Lin, Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 120(2014), pp. 1-5. 28.F. Ruiz-Ocampo; J. Zapien-Rodríguez; O. Burgara-Montero; E. Escoto-Sotelo; F. Núñez-Pérez; J. Ballesteros-Pacheco, Electrodeposition of Nanostructured ZnO Photoanodes for Their Application in the Oxygen Evolution Reaction. Int. J. Electrochem. Sci, 12(2017), pp. 4898-4914. 29.M. Skompska; K. Zarębska, Electrodeposition of ZnO nanorod arrays on transparent conducting substrates–a review. Electrochimica Acta, 127(2014), pp. 467-488. 30.O. Yayapao; T. Thongtem; A. Phuruangrat; S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. Journal of Alloys and Compounds, 576(2013), pp. 72-79. 31.A.K. Chandiran; M. Abdi-Jalebi; M.K. Nazeeruddin; M. Grätzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS nano, 8(2014), pp. 2261-2268. 32.S. Hernández; D. Hidalgo; A. Sacco; A. Chiodoni; A. Lamberti; V. Cauda; E. Tresso; G. Saracco, Comparison of photocatalytic and transport properties of TiO 2 and ZnO nanostructures for solar-driven water splitting. Physical Chemistry Chemical Physics, 17(2015), pp. 7775-7786. 33.A.B. Djurišić; Y.H. Leung, Optical properties of ZnO nanostructures. small, 2(2006), pp. 944-961. 34.M. Baek; D. Kim; K. Yong, Simple but effective way to enhance photoelectrochemical solar-water-splitting performance of ZnO nanorod arrays: charge-trapping Zn (OH) 2 annihilation and oxygen vacancy generation by vacuum annealing. ACS applied materials & interfaces, 9(2017), pp. 2317-2325. 35.A. Janotti; C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Reports on progress in physics, 72(2009), pp. 126501. 36.D.A. Reddy; R. Ma; T.K. Kim, Efficient photocatalytic degradation of methylene blue by heterostructured ZnO–RGO/RuO2 nanocomposite under the simulated sunlight irradiation. Ceramics International, 41(2015), pp. 6999-7009. 37.W. Gao; Z. Li, ZnO thin films produced by magnetron sputtering. Ceramics International, 30(2004), pp. 1155-1159. 38.L. Damiani; R. Mansano In Zinc oxide thin films deposited by magnetron sputtering with various oxygen/argon concentrations, Journal of Physics-Conference Series, 2012; p 012019. 39.S. Bang; S. Lee; Y. Ko; J. Park; S. Shin; H. Seo; H. Jeon, Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition. Nanoscale research letters, 7(2012), pp. 290. 40.Z.W. Ai; Y. Wu; H. Wu; T. Wang; C. Chen; Y. Xu; C. Liu, Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition. Nanoscale research letters, 8(2013), pp. 1-6. 41.E. Galoppini; J. Rochford; H. Chen; G. Saraf; Y. Lu; A. Hagfeldt; G. Boschloo, Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. The Journal of Physical Chemistry B, 110(2006), pp. 16159-16161. 42.Z. Shi; B. Wu; X. Cai; X. Xia; S. Zhang; W. Yin; H. Wang; J. Wang; X. Dong; Y. Zhang, Photofacilitated controllable growth of ZnO films using photoassisted metal organic chemical vapor deposition. Crystal growth & design, 12(2012), pp. 4417-4424. 43.M.A. Borysiewicz, ZnO as a functional material, a review. Crystals, 9(2019), pp. 505. 44.A. B Djurisic; X. Y Chen; Y. H Leung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials. Recent patents on nanotechnology, 6(2012), pp. 124-134. 45.V.K. Anand; S. Sood; A. Sharma In Characterization of ZnO Thin Film Deposited by Sol‐Gel Process, AIP Conference Proceedings, American Institute of Physics: 2010; pp 399-401. 46.W. Lan; X. Peng; X. Liu; Z. He; Y. Wang, Preparation and properties of ZnO thin films deposited by sol-gel technique. Frontiers of Materials Science in China, 1(2007), pp. 88-91. 47.C. Gu; J. Li; J. Lian; G. Zheng, Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass. Applied surface science, 253(2007), pp. 7011-7015. 48.L. Mentar; O. Baka; M. Khelladi; A. Azizi; S. Velumani; G. Schmerber; A. Dinia, Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 26(2015), pp. 1217-1224. 49.B.E. Prasad; P.V. Kamath; S. Ranganath, Electrodeposition of ZnO coatings from aqueous Zn (NO 3) 2 baths: effect of Zn concentration, deposition temperature, and time on orientation. Journal of Solid State Electrochemistry, 16(2012), pp. 3715-3722. 50.V. Fidelsky; M.C. Toroker, Enhanced water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies. The Journal of Physical Chemistry C, 120(2016), pp. 25405-25410. 51.M.W. Louie; A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society, 135(2013), pp. 12329-12337. 52.M.E. Lyons; S. Floquet, Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1− xO2 electrodes in aqueous acid and alkaline solution. Physical Chemistry Chemical Physics, 13(2011), pp. 5314-5335. 53.Y. Lee; J. Suntivich; K.J. May; E.E. Perry; Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 3(2012), pp. 399-404. 54.V.I. Birss; H. Elzanowska; S. Gottesfeld, Quartz crystal microbalance measurements during oxidation/reduction of hydrous Ir oxide electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 318(1991), pp. 327-333. 55.H. Elzanowska; J. Segal; V. Birss, Complications associated with kinetic studies of hydrous Ir oxide films. Electrochimica acta, 44(1999), pp. 4515-4524. 56.P.-Y. Liu; C.-C. Hsu; M.-C. Chuang, Hemin-mediated construction of iridium oxide with superior stability for the oxygen evolution reaction. Journal of Materials Chemistry A, 5(2017), pp. 2959-2971. 57.T. Nakagawa; C.A. Beasley; R.W. Murray, Efficient electro-oxidation of water near its reversible potential by a mesoporous IrO x nanoparticle film. The Journal of Physical Chemistry C, 113(2009), pp. 12958-12961. 58.H.-Y. Hsiao; M.-C. Chuang, Eliminating Evolved Oxygen through an Electro-flocculation Efficiently Prompts Stability and Catalytic Kinetics of an IrOx· nH2O Colloidal Nanostructured Electrode for Water Oxidation. Electrochimica Acta, 137(2014), pp. 190-196. 59.T. Yoshida; D. Komatsu; N. Shimokawa; H. Minoura, Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin solid films, 451(2004), pp. 166-169. 60.S. Yamabi; H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of materials chemistry, 12(2002), pp. 3773-3778. 61.K.-F. Chow; T.M. Carducci; R.W. Murray, Electronic Conductivity of Films of Electroflocculated 2 nm Iridium Oxide Nanoparticles. Journal of the American Chemical Society, 136(2014), pp. 3385-3387. 62.M. Caglar; S. Ilican; Y. Caglar; F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film. Applied Surface Science, 255(2009), pp. 4491-4496. 63.K. Nishio; Y. Watanabe; T. Tsuchiya, Preparation and properties of electrochromic iridium oxide thin film by sol-gel process. Thin Solid Films, 350(1999), pp. 96-100. 64.V. Pfeifer; T.E. Jones; J.J. Velasco Vélez; C. Massué; R. Arrigo; D. Teschner; F. Girgsdies; M. Scherzer; M.T. Greiner; J. Allan, The electronic structure of iridium and its oxides. Surface and Interface Analysis, 48(2016), pp. 261-273. 65.Y. Yang; Y. Wang; S. Yin, Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Applied Surface Science, 420(2017), pp. 399-406. 66.Q. Liu; F. Wang; H. Lin; Y. Xie; N. Tong; J. Lin; X. Zhang; Z. Zhang; X. Wang, Surface oxygen vacancy and defect engineering of WO 3 for improved visible light photocatalytic performance. Catalysis Science & Technology, 8(2018), pp. 4399-4406. 67.O. Marin; M. Tirado; N. Budini; E. Mosquera; C. Figueroa; D. Comedi, Photoluminescence from c-axis oriented ZnO films synthesized by sol-gel with diethanolamine as chelating agent. Materials Science in Semiconductor Processing, 56(2016), pp. 59-65.
|