(3.220.231.235) 您好!臺灣時間:2021/03/08 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱順琳
研究生(外文):CHIU, SHUN-LIN
論文名稱:歐姆加熱對Feta山羊乾酪產率、特性與品質的影響
論文名稱(外文):Effect of Ohmic Heating on Yield, Properties and Quality of Feta Goat Cheese
指導教授:許馨云許馨云引用關係
指導教授(外文):Hsu, Hsin-Yun
口試委員:紀學斌劉整嶺邱致穎許馨云
口試委員(外文):CHI, HSUEH-PINLIU, CHENG-LINGCHIU, CHIH-YINGHsu, Hsin-Yun
口試日期:2020-07-16
學位類別:碩士
校院名稱:東海大學
系所名稱:畜產與生物科技學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:160
中文關鍵詞:乾酪熱處理歐姆加熱凝乳脫水收縮
外文關鍵詞:cheeseheat treatmentohmic heatingsyneresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
歐姆加熱(Ohmic heating; OH)是以食物的介電性質將電能轉換成熱能,具有加熱均勻與升溫速率快的特點,能夠改善傳統加熱之加熱不均和加熱過度的問題。本實驗分別以30V、60V和90V,60Hz歐姆加熱條件(OH30V、OH60V、OH90V)與水浴加熱(WB)蒸煮凝乳至中心溫度36 ℃並維持20分鐘。進行物化特性、升溫紀錄、凝乳特性、脫水收縮率、微生物、酸鹼值、蛋白質水解、質地和感官品評等分析。結果顯示歐姆加熱組升溫時間少於WB組32%以上,且溫度分布較均勻。隨著蒸煮時間縮短,OH組顯著降低凝乳脫水收縮率而提高產率(p<0.05),且凝乳中保留更多的脂肪和鈣含量,但凝乳含水量顯著低於WB組,而且隨著歐姆加熱條件增強,凝乳顯著降低保水力而造成較嚴重的滴水失重(p<0.05)。乳酸菌生長顯著受歐姆加熱之非熱效應-電穿孔影響(p<0.05),凝乳蒸煮後經發酵6小時,OH組的乳酸菌菌數顯著低於WB組,且在熟成階段OH90V組的乳酸菌顯著最低(p<0.05),微生物的自溶作用顯著提升WB組和OH90V組在熟成初期的蛋白質水解作用。凝乳蒸煮時間較長會促進蛋白質重組和收縮形成更緊密的結構,所以WB組硬度值、內聚力、咀嚼性和回復性都顯著高於OH組,而隨著歐姆加熱條件提升咀嚼性和回復性顯著增加(p<0.05)。隨熟成期間之蛋白質水解作用,乾酪質地顯著變軟(p<0.05)。不論是加鹽前或熟成7天的乾酪在感官品評之外觀、氣味、嚐味和質地都無顯著差異(p>0.05),而且OH60V和OH90V組都有較高的接受度。綜上所論,以歐姆加熱替代水浴蒸煮凝乳不僅可縮短製程時間,亦可提升產率和熟成初期蛋白質水解作用,製作出相似或更好品質的乾酪。
Ohmic heating converses electrical energy into thermal energy through the dielectric properties of food itself. The properties of ohmic heating can improve the uneven and excessive heating problems of conventional heating. In the present study, feta cheese curd was cooked by ohmic heating with the condition of 30V, 60V and 90V, 60Hz (OH30V, OH60V, and OH90V) and water bath (WB), then hold at central temperature 36 ℃ for 20 minutes. The physicochemical property, heating temperature records, curd properties, syneresis, microorganisms, pH value, proteolysis, texture and sensory evaluation were analyzed. The results showed that the OH groups decreased heating-up time than the WB group for 32% above and more uniform temperature distribution. The OH groups significantly reduced syneresis and increased curd yield with more fat and calcium content in curd (p<0.05). Curd moisture in the OH groups was significantly lower than WB group (p<0.05). The OH groups with the higher ohmic heating conditions significantly reduced water holding capacity, and resulted in higher drip loss (p<0.05). The non-thermal effect of ohmic heating-electroporation significantly affected the growth of lactic acid bacteria (p<0.05). After 6 hours of fermentation, the count of lactic acid bacteria in the OH groups was significantly lower than the WB group. Lactic acid bacteria in the OH90V group significantly decreased during aging (p<0.05) although the autolysis of microorganism significantly increased proteolysis in the WB and OH90V group at the early stages of ripening. The longer cooking time promoted protein rearrangement and contraction, resulted in significantly higher hardness, cohesiveness, chewiness and resilience in the WB group. When the elevated ohmic heating conditions resulted in the higher chewiness and resilience significantly (p<0.05). During aging, cheese texture significantly became soft with proteolysis (p<0.05). There was no significant difference in the appearance, smell, taste and texture of cheese before salting and aging for 7 days (p>0.05). Moreover, the OH60V and OH90V groups had higher acceptance. Base on the results, applying ohmic heating instead of water bath not only shortened cooking time, but also increased yield and proteolysis in the early stages of ripening to produce similar or better cheeses.
壹、中文摘要 1
貳、前言 3
參、文獻探討 5
一、台灣乳羊產業 5
二、山羊乳之營養價值 8
三、台灣乾酪市場現況 11
四、乾酪之簡介與分類 11
五、Feta 乾酪(Feta cheese)14
六、乾酪製程 15
七、新興食品加工技術-歐姆電阻加熱(Ohmic heating)16
八、凝乳脫水收縮(Syneresis)21
(一)凝乳脫水收縮的動力學與機制 21
(二)凝乳脫水收縮的速率與程度 25
(三)影響凝乳脫水收縮因子 25
九、加鹽 38
十、熟成 40
十一、乾酪質地 44
十二、乾酪風味 47
肆、材料與方法 49
一、乾酪製作 49
(一)材料 49
(二)乾酪製程 49
二、分析項目 53
(一)一般成分分析(Proximate analysis)53
(二)導電度(Conductivity)53
(三)溫度紀錄(Temperature recording)53
(四)凝乳脫水收縮(Syneresis)53
(五)游離鈣含量(Content of calcium ion in whey)54
(六)脂肪和蛋白質的回收率(The recovery of fat and protein)54
(七)酸鹼值(pH value)55
(八)產率(cheese yield)55
(九)凝乳含水量(Curd moisture)55
(十)保水力(Water holding capacity; WHC)56
(十一)滴水失重(Drip loss)56
(十二)凝乳之色澤(CIE L* a* b*)56
(十三)儲藏階段乳清排出量 57
(十四)乳酸菌數(The count of lactic acid bacteria, LAB)57
(十五)游離胜肽與胺基酸 57
(十六)質地描述分析實驗(Texture profile analysis) 59
(十七)感官評析(Sensory evaluation)61
三、統計方式 63
伍、結果與討論 64
陸、結論 129
柒、參考文獻 130
捌、英文摘要 145
玖、小傳 147
拾、附錄 148

行政院農業委員會。2012。農業統計年報,第126頁。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx。
行政院農業委員會。2019。農業統計年報,第124頁。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx。
行政院農業委員會。2003-2019。農委會農業統計資料查詢。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx。
林慶文。1986。乳品製造學,第347-389頁。華香園出版社。台北市。
吳輔祐。1998。羊乳之特殊養生功能。生物產業9:31-35。
郭卿雲、李素珍、林幼君、李欣蓉、林美貞、李孟儒。2016。臺灣地區山羊乳品質調查。畜產研究49:148-156。
黃政齊。2012。台灣山羊產業概況。羊協一家親57:15-16。
黃政齊。2015。法國的乳羊產業的發展。羊協一家親66:20-27。
楊介民。2013。法國的乳羊產業概況(1)。羊協一家親62:35-39。
葉瑞涵、郭卿雲。2019。產業正萌芽-臺灣起司市場現況與未來發展。畜產報導 226:48-51。
A. O. A. C. 1995. Office Method of Analysis. 15th ed. Association of Official Analysis Chemists, Washington, D. C.
Akkerman, M., V. M., Rauh, M. Christensen, L. B. Johansen, M. Hammershøj, and L. B. Larsen. 2016. Effect of heating strategies on whey protein denaturation-Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry. J. Dairy Sci. 99:152-166.
Alichanidou, A. P. 2012. Traditional Greek Feta. Pages 363-376 in handbook of animal-based fermented food and beverage technology. 2nd ed. CRC Press. New York.
Alwis, A. A. P. D., and P. J. Fryer. 1990. The use of direct resistance heating in the food industry. J. Food Eng. 11:3-27.
Amalfitano, N., C. Cipolat-Gotet, A. Cecchinato, M. Malacarne, A. Summer, and G. Bittante. 2019. Milk protein fractions strongly affect the pattern of coagulation, curd firming and syneresis. J. Dairy Sci. 102:2903-2918.
Ambrosoli, R., L. di Stasio, and P. Mazzocco. 1988. Content of αs1-casein and coagulation properties in goat milk. J. Dairy Sci. 71:24-28.
Ammar, E. T. M. A., A. E. Khalel, and M. S. Mostafa. 2014. Effect of type of milk on the properties of traditional feta cheese. J. Food Dairy Sci. 5:315-327.
Anifantakis, E. M., and G. Moatsou. 2006. Feta and other Balkan cheeses. Pages 43-76 in Brined Cheeses. A. Tamime, Ed. Blackwell Publishing, Oxford, UK.
Anon. 1999. Effect of salt addition on the fractal structure of aggregates formed by heating dilute BSA solutions. Biosci. Biotech. Bioch. 63:223-225.
Awad, S., A. N. Hassan, and K. Muthukumarappan. 2005. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: texture and melting properties. J. Dairy Sci. 88:4204-4213.
Baumy, J. J., P. Guenot, S. Sinbandhit, and G. Brulé. 1989. Study of calcium binding to phosphoserine residues of β-casein and its phosphopeptide (1-25) by 31P NMR1989. J. Dairy Res. 56:403-409.
Bloomfield, V. A. 1979. Association of proteins. J. Dairy Res. 46:241-252.
Bodyfelt, F. W., J. Tobias, and G. M. Trout. 1988. Creamed cottage cheese. Pages 167-190 in the sensory evaluation of dairy products. Van Nostrand Reinhold, New York.
Bonfatti, V., G. Di Martino, A. Cecchinato, L. Degano, and P. Carnier. 2010. Effects of β-κ-casein (CSN2–CSN3) haplotypes, β-lactoglobulin (BLG) genotypes, and detailed protein composition on coagulation properties of individual milk of Simmental cows. J. Dairy Sci. 93:3809-3817.
Bourne, M.1978. Texture profile analysis. Food Technol. 32:62-72.
Breuil, P., and J. F. Meulleneta. 2001. A comparison of three instrumental tests for predicting sensory texture profiles of cheese. J. Texture Stud. 32:41-55.
Brickley, C. A., J. A. Lucey, and P. L. H. McSweeney. 2009. Effect of the addition of trisodium citrate and calcium chloride during salting on the rheological and textural properties of Cheddar‐style cheese during ripening. Int. J. Dairy Technol. 62:527-534.
Bryant, A., Z. ustunol, and J. steffe. 1995. Texture of Cheddar Cheese as Influenced by Fat Reduction. Journal of Food Science 60:1216-1219.
Bylund, G. 2015. Dairy processing handbook. 14th ed. Tetra Pak Processing Systems AB. Lund, Sweden.
Cappato, L. P., M. V. S. Ferreira, J. T. Guimaraes, J. B. Portela, A. L. R. Costa, M. Q. Freitas, R. L. Cunha, C. A. F. Oliveira, G. D. Mercali, L. D. F. Marzack, and A. G. Cruz. 2017. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci. Technol. 62:104-112.
Castillo, M. Z., M. J. Jordan, A. Godoy, J. Laencina, and M. B. López. 2000. Kinetics of syneresis in fresh goat cheese. Milchwissenschaft. 55:566-569.
Castillo, M., J. A. Lucey, T. Wang, and F. A. Payne. 2006. Effect of temperature and inoculum concentration on gel microstructure, permeability and syneresis kinetics Cottage. cheese-type gels. Int. Dairy J. 16:153-163.
Castro, I., J. A. Teixeira, S. Salengke, S. K. Sastry, and A. A. Vicente. 2003. The influence of field strength, sugar and solid content on electrical conductivity of strawberry products. J. Food Process Eng. 26:17-29.
Cho, H. Y., A. E. Yousef, and S. K. Sastry. 1996. Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnol. Bioeng. 49:334-340.
Chua, T. E. H. and W. L. Dunkley. 1979. Influence of cooking procedures on properties of cottage cheese curd. J. Dairy Sci. 62:1216-1226.
Cipolat-Gotet, C., A. Cecchinato, G. Stocco, and G. Bittante. 2016. The 9-MilCA method as a rapid, partly automated protocol for simultaneously recording milk coagulation, curd firming, syneresis, cheese yield, and curd nutrients recovery or whey loss. J. Dairy Sci. 99:1065-1082.
Claeys, W. L., C. Verraes, S. Cardoen, J. De Block, A. Huyghebaert, K. Raes, K. Dewettinck, and L. Herman. 2014. Consumption of row or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control. 42:188-201.
Clark, S., and J. W. Sherbon. 2000. Alpha (s1)-casein, milk composition and coagulation properties of goat milk. Small Rumin. Res. 38:123-134.
Collins, Y. F., P. L. H. McSweeney, and M. G. Wilkinson. 2003. Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Inter. Dairy J. 13:841-866.
Corredig, M., and D.G. Dalgleish. 1996. Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Res. Int. 29:49-55.
Creamer, L. K., and N. F. Olson. 1982. Rheological evaluation of maturing Cheddar cheese. J. Food Sci. 47:631-636.
Crow, V. L., T. Coolbear, P. K. Gopal, F. G. Martley, L. L. McKay, and H. Riepe. 1995. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 5: 855-875.
Dabour, N., E. Kheadr, N. Benhamou, I. Fliss, and G. LaPointe. 2006. Improvement of Texture and Structure of Reduced-Fat Cheddar Cheese by Exopolysaccharide-Producing Lactococci. J. Dairy Sci. 89:95-110.
Dalgleish, D. G., and T. G. Parker. 1980. Binding of calcium ions to bovine αs1-casein and precipitability of the protein-calcium ion complexes. J. Dairy Res. 47:113-122.
Dalgleish, D. G. 1992. The enzymatic coagulation of milk. Pages 579-619 in Advanced Dairy Chemistry—1: Proteins. Elsevier Applied Science, London.
Dejmek, P., and P. Walstra. 2004. The Syneresis of Rennet-coagulated Curd. Pages 71-103 in Cheese: Chemistry, Physics and Microbiology. 3rd ed. Chapman & Hall, London.
Ekiz, B., M. Ozcan, A. Yilmaz, C. Tölü, and T. Savaş. 2010. Carcass measurements and meat quality characteristics of dairy suckling kids compared to an indigenous genotype. Meat Sci. 85:245-249.
‌Emmons, D. B., M. Kalab, E. Larmond, and R. J. Lowrie. 1980. Milk gel structure X. texture and icrostructure in Cheddar cheese made from whole and homogenized low-fat milk. J Texture Stud. 11:15-34.
Pastorino Everard, C. D., D. J. O’Callaghan, M. J. Mateo, C. P. O’Donnell, M. Castillo, and F. A. Payne. 2008. Effects of cutting intensity and stirring speed on syneresis and curd losses during cheese manufacture. J. Dairy Sci. 91:2575-2582.
Fagan, C. C., M. Castillo, F. A. Payne, C. P. O’Donnell, and D. J. O’Callaghan. 2007. Effect of cutting time, temperature, and calcium on curd moisture, whey fat losses, and curd yield by response surface methodology. J. Dairy Sci. 90: 4499-4512.
Feirtag, J. M., and L. L. McKay. 1987. Thermoinducible lysis of temperature-sensitive streptococcus cremoris strains. J. Dairy Sci. 70:1779-1784.
Fiszman, S. M., and M. H. Damásio. 2000. Instrumental measurement of adhesiveness in solid and semi-solid foods. A survey. J. Texture Stud. 31:69-91.
Foegeding, E. A., and M. A. Drake. 2007. Invited review: sensory and mechanical properties of cheese texture. J. Dairy Sci. 90:1611-1624.
Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2000. Fundamentals of cheese science. Aspen Publishers, Inc., Maryland.
Fox, P. F., and P. L. H. McSweeney. 2003. Advanced dairy chemistry: volume 1: proteins, parts a&b. 3rd ed. Springer US, Boston, MA.
Fox, P. F., and P. L. H. McSweeney. 2006. Lipids. Vol. 2 in Advanced Dairy Chemistry. Springer. New York, NY.
Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017. Post-coagulation treatment of the renneted milk gel. Pages 234-245 in Fundamentals of cheese science. 2 nd ed. Springer US, Boston, MA.
Fryer, P., A. Alwis, E. Koury, A. Stapley, and L. Zhang. 1993. Ohmic processing of solid-liquid mixtures: Heat generation and convection effects. J. Food Eng. 18:101-125.
Gaucheron, F., Y. Le Graët, E. Boyabal, and M. Piot. 1997. Binding of cations to casein molecules: Importance of physicochemical conditions. Milchwissenschaft. 52:322-327.
Giroux, H. J., C. Bouchard, and M. Britten. 2014. Combined effect of renneting pH, cooking temperature, and dry salting on the contraction kinetics of rennet-induced milk gels. Int. Dairy J. 35:70-74.
Goullieux, A., and Pain, J. P. 2005. Ohmic heating. Pages 469-505 in Emerging technologies for food processing. Academic Press, London.
Grappin, R. and E. Beuvier. 1997. Possible implications of milk pasteurization on the manufacture and sensory quality of ripened cheese. Int. Dairy J. 7:751-761.
Guida, V., G. Ferrari, G. Pataro, A. Chambery, A. Di Maro, and A. Parente. 2013. The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT - Food Sci.Tech. 53:569-579.
Guinee, T. P., M. A. Fenelon, E. O. Mulholland, B. T. O’Kennedy, N. O’Brien, and W. J. Reville. 1998. The influence of milk pasteurization temperature and pH at curd milling on the composition, texture and maturation of reduced fat cheddar cheese. Int. J. Dairy Technol. 51:1-10.
Guinee, T. P., E. P. Feeney, and P. F. Fox. 2001. Effect of ripening temperature on low moisture Mozzarella cheese: 2. Texture and functionality. Lait 81:475-485.
Guinee, T. P., E. P. Feeney, M. A. E. Auty, and P. F. Fox. 2002. Effect of pH and calcium concentration on some textural and functional properties of mozzarella cheese. J. Dairy Sci. 85:1655-1669.
Guinee, T. P. 2007. Salt in cheese. Pages 84-95 in Cheese Problems Solved. P. L. H. McSweeney, 1st ed. Woodhead, Boca Raton, FL.
Gunasekaran, S., and M. M. Ak. 2002. Cheese rheology and texture. CRC Press, Boca Raton.
Guo, M. 2003. Goat's milk. Pages 2944-2949 in Encyclopedia of Food Sciences and Nutrition. Academic Press, London, UK.
Hayaloglu, A. A., B. Karatekin, and H. Gurkan. 2014. Thermal stability of chymosin or microbial coagulant in the manufacture of Malatya, a Halloumi type cheese: Proteolysis, microstructure and functional properties. Int. Dairy J. 38:136-144.
Hickey, C. D., M. G. O’Sullivan, J. Davis, D. Scholz, K. N. Kilcawley, M. G. Wilkinson, and J. J. Sheehan. 2018. The effect of buttermilk or buttermilk powder addition on functionality, textural, sensory and volatile characteristics of Cheddar-style cheese. Food Res. Int. 103:468-477.
Hort, J., and G. L. Grys. 2001. Developments in the textural and rheological properties of UK Cheddar cheese during ripening. Int. Dairy J. 11:475-481.
Hurt, J., and S. Ehlers. 2008. Old world favorites. Pages 120-122 in The Complete Idiot's Guide to Cheeses of the World: A Tasteful Guide to Selecting, Serving, and Enjoying Cheese. Penguin, USA.
Iwasawa, A., A. Suzuki-Iwashima, F. Iida, and M. Shiota. 2014. Effects of flavor and texture on the desirability of Cheddar cheese during ripening. Food Sci. Technol. Res. 20:23-29.
Jack, F. R., and A. Paterson. 1992. Texture of hard cheeses. Trends Food Sci. Technol. 3:160-164.
Jameson, M. E. 1990. Cheese with less fat. Aust. J. Dairy Technol. 11:93-98.
Jarrett, W. D., J. W. Aston, and J. R. Dulley. 1982. A simple method for estimating free amino acids in Cheddar cheese. Australian J. Dairy Technol. 37:55-58.
Johnston, K. A., M. S. Luckman, H. G. Lilley, and B. M. Smale. 1998. Effect of various cutting and stirring conditions on curd particle size and losses of fat to the whey during cheddar cheese manufacture in ost vats. Int. Dairy J. 8:281-288.
Johnson, M. E. 2003. Low‐fat cheese. Pages 438-444 in Encyclopedia of Dairy Science. H. Roginski, J. W. Fuquay and P. F. Fox, eds. Academic Press, Oxford, UK.
Jooyandeh, H. 2009. Effect of fermented whey protein concentrate on texture of iranian white cheese. J. Texture Stud. 40:497-510.
Joshi, N. S., K. Muthukumarappan, and R. I. Dave. 2004. Effect of calcium on microstructure and meltability of part skim mozzarella cheese. J. Dairy Sci. 87:1975-1985.
Jõudu, I., M. Henno, T. Kaart, T. Püssa, and O. Kärt. 2008. The effect of milk protein contents on the rennet coagulation properties of milk from individual dairy cows. Int. Dairy J. 18:964-967.
Keeffe, A. M. O’, P. F. Fox, and C. Daly. 1976. Contribution of rennet and starter proteases to proteolysis in Cheddar cheese. J. Dairy Res. 43:97-107.
Kia, E. M., M. Alizadeh, and M. Esmaiili. 2018. Development and characterization of probiotic UF Feta cheese containing Lactobacillus paracasei microencapsulated by enzyme based gelation method. J. Food Sci. Tech. 55:3657-3664.
Kim, S. S., and D. H. Kang. 2015a. Comparative effects of ohmic and conventional heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in skim milk and cream. J. Food Protect. 78:1208-1214.
Kim, S. S., and D. H. Kang. 2015b. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes. J. Appl. Microbiol. 119:475-486.
Koca, N., V. M. Balasubramaniam, and W. J. Harper. 2011. High-pressure effects on the microstructure, texture, and color of White-brined Cheese. J. Food Sci. 76:399-404.
Kumar, S., S. K. Kanawjia, S. Kumar, and S. Khatkar. 2012. Comparative study of buffalo and cow milk feta-type cheese with respect to sensory and biochemical characteristics during ripening. J. Food Process. Preserv. 38:823-829.
Kuo, M. I., M. E. Anderson, and S. Gunasekara. 2003. Determining effects of freezing on pasta filata and non-pasta filata mozzarella cheeses by nuclear magnetic resonance imaging. J. Dairy Sci. 86:2525-2536.
Laan, H., S. E. Tan, P. Bruinenberg, G. Limsowtin, and M. Broome. 1998. Aminopeptidase activities of starter and non-starter lactic acid bacteria under simulated cheddar cheese ripening conditions. Int. Dairy J. 8267-274.
Lagoueyte, N., J. Lablee, A. Lagaude, and B. T. B. De La Fuente 1994. Temperature affects microstructure of renneted milk gel. J. Food Sci. 56:956-959.
Lawrence, A. J. 1959. Syneresis of rennet curd. Part 1. Effect of time and temperature. Aust. J. Dairy Technol. 14:166-168.
Lawrence, R. C., L. K. Creamer, and J. Gilles. 1987. Texture development during cheese ripening. J. Dairy Sci. 70:1748-1760.
Lawrence, R. C. 1991. Processing conditions. Pages 64-78 in Factors affecting the yield of cheese. International Dairy Federation, Brussels, Belgium.
Loghavi, L., S. Sastry, and A. Yousef. 2007. Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotech. Bioeng. 98:872-881.
Loghavi, L., S. K. Sastry, and A. E. Yousef. 2008. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnol. Prog. 24:148-153.
Loghavi, L., S. K. Sastry, and A. E. Yousef. 2009. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnol. Prog. 25:85-94.
Lucey, J. A., and P. F. Fox. 1993. Importance of Calcium and Phosphate in Cheese Manufacture: A Review. J. Dairy Sci. 76: 1714-1724.
Lucey, J. A. 2002. Formation and physical properties of milk protein gels. J. Dairy Sci. 85:281-294.
Machado, L. F., R. N. Pereira, R. C. Martins, J. A. Teixeira, and A. A. Vicente. 2010. Moderate electric fields can inactivate escherichia coli at room temperature. J. Food Eng. 96:520-527.
Mallatou, H., E. C. Pappa, and V. A. Boumba. 2004. Proteolysis in Teleme cheese made from ewes’, goats’ or a mixture of ewes’ and goats’ milk. Inter. Dairy J. 14:977-987.
Marshall R. 1982. An improved method for measurement of the syneresis of curd formed by rennet action on milk. J. Dairy Res., 49:329-33.
Marziali, S., and K. F. Ng-Kwai-Hang. 1986. Effects of milk composition and genetic polymorphism on coagulation properties of milk. J. Dairy Sci., 69:1793-1798.
Mateo, M. J., C. D. Everard, C. C. Fagan, C. P. O'Donnell, M. Castillo, F. A. Payne, and D. J. O'Callaghan. 2009. Effect of milk fat concentration and gel firmness on syneresis during curd stirring in cheese-making. Int. Dairy J. 19:264-268.
McMahon, D. C., R. L. Fife, and C. J. Oberg. 1999. Water partitioning in Mozzarella cheese and its relationship to cheeses meltability. J. Dairy Sci., 82:1361-1369.
McMahon, D. J., B. Paulson, and C. J. Oberg. 2005. Influence of calcium, pH, and moisture on protein matrix structure and functionality in direct-acidified nonfat mozzarella cheese. J. Dairy Sci. 88:3754-3763.
McSweeney, P. L. H., and M. J. Sousa. 2000. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait. 80:293-324.
McSweeney, P. L. H. 2007a. Flavour, texture and flavour defects in hard and semi-cheeses. Pages 189-207 in Cheese Problems Solved. P. L. H. McSweeney, 1st ed. Woodhead, Boca Raton, FL.
McSweeney, P. L. H. 2007b. Syneresis. Pages 72-79 in Cheese Problems Solved. P. L. H. McSweeney, 1st ed. Woodhead, Boca Raton, FL.
Melilli, C., D. M. Barbano, G. Licitra, G. Portelli, G. Di Rosa, and S. Carpino. 2003. Influence of the temperature of salt brine on salt uptake by Ragusano cheese. J. Dairy Sci. 86:2799-2812.
Mellema, M., J. W. M. Heesakkers, J. H. J. van Opheusden, and T. van Vliet. 2000. Structure and scaling behavior of aging rennet-induced casein gels examined by confocal microscopy and permeametry. Langmuir. 16:6847-6854.
Mellema, M., P. Walstra, J. H. J. Van Opheusden, and T. Van Vliet. 2002. Effects of structural rearrangements on the rheology of rennet-induced casein particle gels. Adv. Colloid Interface Sci. 98:25-50.
Metzger, L. E., D. M. Barbano, P. S. Kindstedt, M. R. Guo. 2001. Effect of milk preacidification on low fat Mozzarella cheese: II. Chemical and functional properties during storage. J. Dairy Sci. 84:1348-1356
Mishra, R., S. Govindasamy-Lucey, and J. A. Lucey. 2005. Rheological properties of rennet-induced gels during the coagulation and cutting process: Impact of processing conditions. J. Texture Stud. 36:190-212.
Mistry, V. V., and K. M. Kasperson. 1998. Influence of salt on the quality of reduced fat cheddar cheese. J. Dairy Sci. 81:1214-1221.
Muir, D. D., S. A. R. Williams, A. Y. Tamime, and M. E. Shenana. 1997. Comparison of the sensory profiles of regular and reduced-fat commercial processed cheese spreads. Int. J. Food Sci. Technol. 32:279-287.
Muñoz, S. V., M. G. Torres, F. Q. Guerrero, and R. R. Talavera. 2017. A new study of the kinetics of curd production in the process of cheese manufacture. J. Dairy Res. 84:479-483.
O’Connell, J. E., and P. F. Fox. 2011. Heat treatment of milk: Heat stability of milk. Pages in 744-749 Encyclopedia of Dairy Sciences. 2nd th. Acad. Press, San Diego, CA.
O’Donovan, C. M., M. G. Wilkinson, T. P. Guinee, and P. F. Fox. 1996. An investigation of the autolytic properties of three lactococcal strains during cheese ripening. Int. Dairy J. 6:1149-1165.
Ong, L., R. R. Dagastine, M. A. E. Auty, S. E. Kentish, and S. L. Gras. 2011. Coagulation temperature affects the microstructure and composition of full fat Cheddar cheese. Dairy Sci. Technol. 91:739-758.
Pandey, P. K., H. S. Ramaswamy, and D. St-Gelais 2000. Water-Holding Capacity and Gel Strength of Rennet Curd as Affected by High-Pressure Treatment of Milk. Food Res. Int. 33:655-663.
Park, Y. W., A. W. Mahoney, D. G. Hendricks. 1986. Bioavailability of iron in goat milk compared with cow milk fed to anemic rats. J. Dairy Sci. 69:2608-2615.
Park, Y. W. 2001. Proteolysis and lipolysis of goat milk cheese. J. Dairy Sci. 84:84-92.
Park, Y. W., M. Juárez, M. Ramos, and G. F. W. Haenlein. 2007. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 68:88-113.
Parker, T. G., and D. G. Dalgleish. 1981. Binding of calcium ions to bovine β-casein. J. Dairy Res. 48:71-76.
Parrott, D. L. 1992. Use of ohmic heating for aseptic processing of food particulates. Food Tech. 46: 68-72.
Pastorino, A. J., R. I. Dave, C. J. Oberg, and D. J. McMahon. 2002. Temperature effect on structure-opacity relationships of nonfat mozzarella cheese. J. Dairy Sci. 85:2106-2113.
Pastorino, A. J., C. L. Hansen, and D. J. McMahon. 2003a. Effect of salt on structure-function relationships of cheese. J. Dairy Sci. 86: 60-69.
Pastorino, A. J., N. P. Ricks, C. L. Hansen, and D. J. McMahon. 2003b. Effect of calcium and water injection on structure-function relationships of cheese. J. Dairy Sci. 86:105-113.
Pastorino, J., C. L. Hansen, and D. J. McMahon. 2003c. Effect of sodium citrate on structure-function relationships of Cheddar cheese. J. Dairy Sci. 86:3113-3121.
Paulson, B. M., D. J. McMahon, and C. J. Oberg. 1998. Influence of salt on appearance, functionality, and protein arrangements in nonfat Mozzarella cheese. J. Dairy Sci. 81:2053-2064.
Pereira, R., J. Martins, C. Mateus, J. A. Teixeira, and A. A. Vicente. 2007. Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating Chem. Pap. 61:121-126.
Pereira, R. N., R. C. Martins, and A. A. Vicente. 2008. Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization. J. Dairy Sci. 91: 2925-2937.
Pereira, R. N., J. A. Teixeira, and A. A. Vicente. 2011. Exploring the denaturation of whey proteins upon application of moderate electric fields: A kinetic and thermodynamic study. J. Agric. Food Chem. 59: 11589-11597.
Pereira, R. N., R. M. Rodrigues, Ó. L. Ramos, F. X. Malcata, J. A. Teixeira, and A. A. Vicente. 2016. Production of whey protein-based aggregates under ohmic heating. Food Bioproc. Tech. 9:576-587.
Pereira, R. N., R. M. Rodrigues, E. Altinok, Ó. L. Ramos, F. X. Malcata, P. Maresca, G. Ferrari, J. A. Teixeira, and A. A. Vicente. 2017. Development of iron-rich whey protein hydrogels following application of ohmic heating-Effects of moderate electric fields. Food Res. Int. 99:435-443.
Philip, J., L. Bonakdar, J. Bibette, and F. Leal-Calderon. 2000. Viscous sintering phenomena in liquid-liquid dispersions. Phys. Rev. Lett. 84:2018-2021.
Philip, J., J. E. Poirier, J. Bibette, and F. Leal-Calderon. 2001. Gelation and coarsening in dispersions of highly viscous droplets. Langmuir. 17:3545-3552.
Politis, I., and K. F. Ng-Kwai-Hang. 1988. Effects of somatic cell counts and milk composition on the coagulating properties of milk. J. Dairy Sci. 71:1740-1746.
Prajapati, D. B., D. B. Kapadiya, A. K. Jain, B. M. Mehta, V. B. Darji, and K. D. Aparnathi. 2017. Comparison of Surti goat milk with cow and buffalo milk for physicochemical characteristics, selected processing-related parameters and activity of selected enzymes. Vet. World. 10:477-484.
Prasad N., and V. B. Alvarez. 1999. Effect of salt and chymosin on the physicochemical properties of Feta cheese during ripening. J. Dairy Sci. 82:1061-1067.
Privalov, P. L. 1990. Cold denaturation of proteins. Biochem Mol. Biol. 25:281-305.
Qvist, K. B. 1979. Reestablishment of the original rennetability of milk after cooling. 1. The effect of cooling and LTST pasteurization of milk and renneting. Milchwissenschaft. 34:467-470.
Rahman, M. S. 2005. Dried food properties: challenges ahead. Dairy. Technol. 23:695-715.
Rehman, S. U., J. M. Banks, P. L. H. McSweeney, and P. F. Fox. 2000. Effect of ripening temperature on the growth and significance of non-starter lactic acid bacteria in Cheddar cheese made from raw or pasteurised milk. Inter. Dairy J. 10:45-53.‌
Remeuf, F., and L. Lenoir. 1986. Relationship between the physico-chemical characteristics of goat’s milk and its rennetability. Int. Dairy. Bull 202:68.
Remeuf, F., J. Lenoir, and C. Duby. 1989. Etude des relations entre les caractéristiques physico-chimiques des laits de chèvre et leur aptitude à la coagulation par la pressure. Lait. 69:499-518.
Rowney, M. K., P. Roupas, M. W. Hickey, and D. W. Everett. 2004. Salt-induced structural changes in 1-day old Mozzarella cheese and the impact upon free oil formation. Int. Dairy J. 14:809-816.
Ruan, R., X. Ye, P. Chen, and C. J. Doona. 2001. Ohmic heating. Pages 241-265 in Thermal Technologies in Food Processing. Elsevier
Rynne, N. M., T. P. Beresford, T. P. Guinee, E. Sheehan, C. M. Delahunty, and A. L. Kelly. 2008. Effect of high-pressure treatment of 1 day-old full-fat Cheddar cheese on subsequent quality and ripening. Innov. Food Sci. Emerg. Technol. 9:429-440.
SAS. 2017. SAS 9.4. SAS Institute Inc., Cary, NC. USA.
Sheehan, J. J., and T. P. Guinee. 2004. Effect of pH and calcium level on the biochemical, textural and functional properties of reduced-fat Mozzarella cheese. Int. Dairy J. 14: 161-172. ‌
Sheehan, A., C. O’Loughlin, G. O’Cuinn, R. J. FitzGerald, and M. G. Wilkinson. 2005. Cheddar cheese cooking temperature induces differential lactococcal cell permeabilization and autolytic responses as detected by flow cytometry: implications for intracellular enzyme accessibility. J. Appl. Microbiol. 99:1007-1018.
Silanikove, N., F. Shapiro, and A. Shamay. 2003. Use of an ion-selective electrode to determine free Ca ion concentration in the milk of various mammals. J. Dairy Res. 70:241-243. ‌
Smit, G., B. A. Smit, and W. J. M. Engels. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 29:591-610.
Soltani, M., O. S. Boran, and A. A. Hayaloglu. 2016. Effect of various blends of camel chymosin and microbial rennet (Rhizomucor miehei) on microstructure and rheological properties of Iranian UF White cheese. LWT - Food Sci. Technol. 68:724-728.
Sousa, M., Y. Ardö, and P. L. McSweeney. 2001. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 11:327-345.
Stancl, J., and R. Zitny. 2010. Milk fouling at direct ohmic heating. J. Food Eng. 99:437-444.
Sudhir, K. S. 2004. Advances in ohmic heating and moderate electric field (MEF) processing. Pages 491-499 in Novel food processing technologies. CRC Press.
Sun, H., S. Kawamura, J. Himoto, K. Itoh, T. Wada, and T. Kimura. 2008. Effects of ohmic heating on microbial counts and denaturation of proteins in milk. Food Sci. Tech. Res. 14:117-123.
Sun, H., F. Masuda, S. Kawamura, J. I. Himoto, K. Asano, and T. Kimura. 2009. Effect of electric current of ohmic heating on nonthermal injury to Streptococcus thermophilus in milk. J. Food Process Eng. 34:878-892.
Szczesniak, A. S. 2002. Texture is a sensory property. Food Qual. Prefer. 13:215-225.
Tanaka, H. 2000. Viscoelastic phase separation. J. Phys. Condens. Matter. 12:207-264.
Thomann, S., A. Brechenmacher, and J. Hinrichs. 2008. Strategy to evaluate cheesemaking properties of milk from different goat breeds. Small Rumin. Res. 74:172-178.
Tohic, L. C., J. J. O’Sullivan, K. P. Drapala, V. Chartrin, T. Chan, A. P. Morrison, J. P. Kerry, and A. L. Kelly. 2018. Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng. 220:56-64.
Tuckey, S. L. 1964. Properties of casein important in making cottage cheese. J. Dairy Sci. 47:324-326.
Tunick, M. H., E. J. Nolan, J. J. Shieh, J. J. Basch, M. P. Thompson, B. E. Maleeff, and V. H. Holsinger. 1990. Cheddar and Cheshire cheese rheology. J. Dairy Sci. 73:1671-1675.
Van den Bijgaart, H. J. C. M. 1988. Syneresis of rennet-induced milk gels as influenced by cheesemaking parameters. PhD Thesis. Wageningen Agricultural Univ., Wageningen, the Netherlands.
Van Vliet, T., H. J. M. van Dijk, P. Zoon, and P. Walstra. 1991. Relation between syneresis and rheological properties of particle gels. Colloid Polym. Sci. 269:620-627.
Van Vliet, T., and P. Walstra. 1994. Water in casein gels; How to get it out or keep it in. J. Food Eng. 22:75-88.
Varghese, K. S., Pandey, M. C., Radhakrishna, K., and Bawa, A. S. 2014. Technology, applications and modelling of ohmic heating: A review. Int. J. Food Sci. Technol. 51: 2304-2317.
Vegarud, G. E., T. Langsrud, M. J. Brovold, T. G. Devold, B. O. Henriksen, and J. Oyaas. 1999. Cows milk protein genotypes: Quality and stability of row milk, pasteurized milk and fermented milk. Int. Dairy J. 9:399-400.
Walstra, P., H. J. M. Van Dijk, and T. J. Geurts. 1985. The syneresis of curd. 1: General considerations and literature review. Neth. Milk Dairy J. 39:209-246.
Walstra, P. 1990. On the Stability of Casein Micelles. J. Dairy Sci. 73: 1965-1979.
Waungana, A., H. Singh, and R. J. Bennett. 1996. Influence of denaturation and aggregation of β-lactoglobulin on rennet coagulation properties of skim milk and ultrafiltered milk. Food Res. Int. 29:715-721.
Weber, F. 1989. El desuerado del coágulo. Pages 21-33 in El Queso. A. Eck (Ed.). Omega. S. A, Barcelona.
Wedholm, A., L. B. Larsen, H. Lindmark-Månsson, A. H. Karlsson, and A. Andrén. 2006. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. J. Dairy Sci. 89:3296-3305.
Wilkinson, M. G., T. P. Guinee, D. M. O’Callaghan, and P. F. Fox. 1994. Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. J. Dairy Res. 61: 249-262.
Wu, C., W. Ma, and Y. Hua. 2018. The relationship between breaking force and hydrophobic interactions or disulfide bonds involved in heat-induced soy protein gels as affected by heating time and temperature. Inter. J. Food Sci. Techol. 54:231-239.
Zhao, L., S. Zhang, H. Uluko, L. Liu, J. Lu, H. Xue, F. Kong, J. Lv. 2014. Effect of ultrasound pretreatment on rennet-induced coagulation properties of goat’s milk. Food Chem. 165:167-174.
Zisu, B., and N. P. Shah. 2005. Low‐fat mozzarella as influenced by microbial exopolysaccharides, preacidification, and whey protein concentrate. J. Dairy Sci. 88:1973-1985.
Zoidou, E., N. Plakas, D. Giannopoulou, M.,Kotoula, and G. Moatsou. 2015. Effect of supplementation of brine with calcium on the Feta cheese ripening. Inter. J. Dairy Technol. 68:420-426.

電子全文 電子全文(網際網路公開日期:20250811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔