|
[1]Shih, Y. Y., Hsiu, P. C., & Pang, A. C. (2018). A data parasitizing scheme for effective health monitoring in wireless body area networks. IEEE Transactions on Mobile Computing, 18(1), 13-27. [2]Gill, K., Yang, S. H., Yao, F., & Lu, X. (2009). A zigbee-based home automation system. IEEE Transactions on consumer Electronics, 55(2), 422-430. [3]M. Bertocco, G. Gamba, A. Sona, and S. (2008). Vitturi,Experimental Characterization of Wireless Sensor Networks For Industrial Applications. IEEE Trans. Instrum, Meas, 57(8), 1537–1546. [4]Y. Kim, R. G. Evans, and W. M. Iversen. (2008). Remote Sensing and Control of an Irrigation System using a Distributed Wireless Sensor Network. IEEE Trans. instrum. Meas, 57(7), 1379–1387. [5]S. H. Lee, S. Lee, H. Song, and H. S. Lee. (2009). Wireless Sensor Network Design for Tactical Military Applications: Remote Large-scale Environments, In MILCOM 2009-2009 IEEE Military communications conference, 1-7. [6]Wan, J., Zou, C., Ullah, S., Lai, C.-F., Zhou, M., & Wang, X. (2013). Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Network, 27(5), 56–61. [7]Ahmed, S., Saqib, M., Adil, M., Ali, T., & Ishtiaq, A. (2017). Integration of cloud computing with Internet of Things and wireless body area network for effective healthcare. 2017 International Symposium on Wireless Systems and Networks (ISWSN), 1-6. [8]Wu, T., Wu, F., Redoute, J.-M., & Yuce, M. R. (2017). An Autonomous Wireless Body Area Network Implementation Towards IoT Connected Healthcare Applications. IEEE Access, 5, 11413–11422. doi:10.1109/access.2017.2716344. [9]Ohsawa, Y. (2001). The scope of chance discovery. Lecture Notes in Computer Science, 413-413. [10]Ohsawa, Y., & Fukuda, H. (2002). Chance discovery by stimulated groups of people. Application to understanding consumption of rare food. Journal of Contingencies and Crisis Management, 10(3), 129-138. [11]Terai, H., & Miwa, K. (2013). A Chance Favors a Prepared Mind: Chance Discovery from Cognitive Psychology. In Advances in Chance Discovery , 33-48. [12]Sarlin, P. (2013). Chance discovery with self-organizing maps: Discovering imbalances in financial networks. In Advances in Chance Discovery ,49-61. [13]Weiss, G. (1999). Timeweaver: A genetic algorithm for identifying predictive patterns in sequences of events. In Proceedings of the Genetic and Evolutionary Computation Conference, 718-725. [14]Yukio Ohsawa (2002). Chance discoveries for making decisions in complex real world. New Generation Computing, 20(2), 143-163. [15]Naoaki Okazaki, Yukio Ohsawa, & Mitsuru Ishizuka. (2004). チャンス発見のための統合型データマイニングツール Polaris (人工知能基礎論研究会 (第 53 回) 特集 「シナリオ創発の科学へ向けて」 および一般演題)--(セッション (3) シナリオ創発支援ツール). 人工知能基礎論研究会, 53, 43-48. [16]Ohsawa, Y., & Nara, Y. (2002). Modeling the process of chance discovery by chance discovery on double helix. In Proc. of AAAI Fall Symposium on Chance Discovery, 33-40. [17]Ko, N., Jeong, B., Choi, S., & Yoon, J. (2018). Identifying Product Opportunities Using Social Media Mining: Application of Topic Modeling and Chance Discovery Theory. IEEE Access, 6, 1680–1693. [18]Emoto, M. (2015). Extraction of Preference of Recipe Providers and Users on Recipe-Sharing Websites. 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 694-697. [19]Moutidis, I., & Williams, H. T. (2019). Utilizing Complex Networks for Event Detection in Heterogeneous High-Volume News Streams. In International Conference on Complex Networks and Their Applications, 659-672. [20]Tsuda, K., & Thawonmas, R. (2005). Keygraph for visualization of discussions in comments of a blog entry with comment scores. WESE Trans. Computers, 12(4), 1794-801. [21]Chiu, T. F., Hong, C. F., Hsu, C. L., & Chiu, Y. T. (2010). Using text mining and chance discovery for exploring technological directions via patent data. In 2010 IEEE International Conference on Systems, Man and Cybernetics, 3853-3860. [22]Park, H., & Yoon, J. (2015). A chance discovery-based approach for new product–service system (PSS) concepts. Service Business, 9(1), 115-135. [23]Y. Ohsawa. (2003). KeyGraph: Visualized Structure Among Event Clusters. In Chance Discovery. Berlin, Germany: Springer, 262-275. [24]Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831. [25]Hayajneh, T., Almashaqbeh, G., Ullah, S., & Vasilakos, A. V. (2014). A survey of wireless technologies coexistence in WBAN: analysis and open research issues. Wireless Networks, 20(8), 2165-2199. [26]Khan, R. A., & Pathan, A. S. K. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14(4), 1-23. [27]Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113-122. [28]Negra, R., Jemili, I., & Belghith, A. (2016). Wireless body area networks: Applications and technologies. Procedia Computer Science, 83, 1274-1281. [29]Alam, M. M., & Hamida, E. B. (2014). Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities. Sensors, 14(5), 9153-9209. [30]Y. Ohsawa. (2003). Modeling the Process of Chance Discovery. In Chance Discovery. Berlin, Germany: Springer, 2-15. [31]Thawonmas, R., Hata, K. (2005). Aggregation of Action Symbol Subsequences for Discovery of Online-Game Player Characteristics Using KeyGraph. International Conference on Entertainment Computing, 126-135. [32]Kobayashi, F., & Nara, Y. (2016). A study on the view of oral health and oral risk management in Japan: Narrative analysis in combination with text-mining and KJ method. Intelligent Decision Technologies, 10(3), 249-261. [33]D Goldberg ,K. Sastry & Y. Ohsawa. (2003). Discovering Deep Building Blocks for Competent Genetic Algorithms Using Chance Discovery via KeyGraphs. In Chance Discovery. Berlin, Germany: Springer, 276-301. [34]Y. Ohsawa. (2006). Scenario Maps on Situational Switch Model, Applied to Blood-Test Data for Hepatitis C Patients. Studies in Computational Intelligence (SCI) 30, 69–81. [35]Jun, S., & Park, S. S. (2013). Examining technological innovation of Apple using patent analysis. Industrial Management & Data Systems. [36]Perera, K., & Karunarathne, D. (2015). KeyGraph and WordNet hypernyms for topic detection. 2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE), 303-308. [37]Kong, D., Fan, Y., Du, Y., Hu, S., Liu, Y., & Li, Q. (2018). Personalized recommendation algorithm based on the chance discovery in social network services. 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), 719-723. [38]Matsumura, N., Matsuo, Y., Ohsawa, Y., & Ishizuka, M. (2002). Discovering Emerging Topics from WWW. Journal of Contingencies and Crisis Management, 10(2), 73–81. [39]OKAZAKI, Naoaki; OHSAWA, Yukio. (2003). Polaris: an integrated data miner for chance discovery. In: Proceedings of The Third International Workshop on Chance Discovery and Its Management, Crete, Greece. [40]Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research (3), 993-1022. [41]D. M. Blei and J. D. Lafferty. (2009). Topic models, Text mining: classification, clustering, and applications, 10, 34. [42]Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467-483. [43]Sommeria‐Klein, G., Zinger, L., Coissac, E., Iribar, A., Schimann, H., Taberlet, P., & Chave, J. (2020). Latent Dirichlet Allocation reveals spatial and taxonomic structure in a DNA‐based census of soil biodiversity from a tropical forest. Molecular Ecology Resources, 20(2), 371-386. [44]Jiang, Y., Song, X., Harrison, J., Quegan, S., & Maynard, D. (2017). Comparing Attitudes to Climate Change in the Media using sentiment analysis based on Latent Dirichlet Allocation. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, 25-30. [45]Du, B., Wang, Y., Wu, C., & Zhang, L. (2018). Unsupervised scene change detection via latent Dirichlet allocation and multivariate alteration detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4676-4689. [46]Freeman, L.C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40 (1), 35- 41. [47]Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment. 2008(10), P10008. [48]Vosoughi, S., & Roy, D. (2016). A semi-automatic method for efficient detection of stories on social media. In Tenth International AAAI Conference on Web and Social Media. [49]Pujol, J. M., Erramilli, V., & Rodriguez, P. (2009). Divide and conquer: Partitioning online social networks. arXiv preprint arXiv:0905.4918. [50]Haynes, J., & Perisic, I. (2009). Mapping search relevance to social networks. In Proceedings of the 3rd Workshop on Social Network Mining and Analysis, 1-7. [51]Hui, P., & Sastry, N. (2009, August). Real world routing using virtual world information. In 2009 International Conference on Computational Science and Engineering Vol. 4, 1103-1108. [52]Kushima, M., Araki, K., Yamazaki, T., Araki, S., Ogawa, T., & Sonehara, N. (2017). Text data mining of care life log by the level of care required using keygraph. In Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 24-29. [53]Yang, S., Sun, Q., Zhou, H., Gong, Z., Zhou, Y., & Huang, J. (2018, March). A Topic Detection Method Based on KeyGraph and Community Partition. In Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, 30-34. [54]Lee, S., Kim, M. soo, Park, Y., & Kim, C. (2016). Identification of a technological chance in product-service system using KeyGraph and text mining on business method patents. International Journal of Technology Management, 70(4), 239-256. [55]Yukio Ohsawa. A free basic manual (version E-0) of Polaris, that is a piece of KeyGraph software. The University of Tokyo. [56]F. Rousseau and M. Vazirgiannis. (2013). Graph-of-word and TW-IDF: new approach to ad hoc IR. In Proceedings of the 22nd ACM international conference on information & knowledge management , 59–68. [57]Paranyushkin, D (2019). InfraNodus: Generating Insight Using Text Network Analysis. In The World Wide Web Conference, 3584-3589. [58]Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of mathematical sociology. 25(2), 163-177. [59]Burt, R. S. (2004). Structural Holes: The social structure of competition. DOBBIN, F. The new economic sociology: a reader. Princeton: Princeton University, 325-348. [60]Noy, L., Hart, Y., Andrew, N., Ramote, O., Mayo, A. E., & Alon, U. (2012, May). A quantitative study of creative leaps. In ICCC, 72-76. [61]Yu, J., Wang, J., Zhang, Y., Chen, G., Mao, W., Ye, Y., ... & Gu, Z. (2020). Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 1-8. [62]Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635-1657.
|