跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周凱崴
研究生(外文):CHOU,KAI-WEI
論文名稱:微型化多功能型雙工器設計
論文名稱(外文):Design of Compact Multifunctional Diplexers
指導教授:陳錡楓
指導教授(外文):CHEN,CHI-FENG
口試委員:鄧卜華趙世峰黃定彝
口試日期:2020-07-27
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:84
中文關鍵詞:微帶線帶通濾波器功率分波器雙工器
外文關鍵詞:microstrip linebandpass filterpower dividerdiplexer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本篇論文提出以微帶線實現兩種整合帶通濾波器、功率分波器及雙工器的電路且每種分別提出二階濾波響應以及三階濾波響應之雙工器,第一型電路分別使用兩種不同的基板做設計,本論文共計六個電路。
  第一型整合濾波功率分工器之雙工器採用兩個操作在不同頻率的多模態截線負載型共振器,整體而言可把電路視為兩個操作在不同頻率的濾波功率分波器所組成,並透過分佈式耦合技術整合成雙工器後在輸出耦合線的開路末端加上隔離電阻以增加隔離度。而相較於較厚的基板,較薄的基板在頻寬內的隔離度可以達到較佳的表現。
  第二型整合濾波功率分波器之雙工器透過分佈式耦合將兩組操作在不同頻率且左右對稱的濾波功率分波器整合為雙工器,其通道的訊號由輸入端進入後經由操作在相同頻率的共振器分為左右兩端輸出,並在共振器電流較強的部份加上隔離電阻提升輸出端信號的隔離度。

  This paper proposes two types of integrated bandpass filter and power divider, each of which presents the second and third-order filter responses diplexer, and uses two different base plates to design seven circuits.
  The first diplexer-integrated filtering power divider uses two multimode cut-off resonators at different frequencies.On the whole, the circuit can be considered as two filter power dividers operating at different frequencies,after integrating into the diplex through distributed coupling technology, the isolation resistance is added to the open circuit end of the output coupling line to increase the isolation.Compared with the thicker base plate, the thinner base plate can show better isolation in the width of the bandwidth.
  The second type diplexer-integrated filtering power divider integrates two sets of filter power divider operating at different frequencies and right and left symmetric filter power divider into diplexer through distributed coupling,the signal from the channel is entered by the input terminal and then is divided into left and right outputs via resonators operating at the same frequency.The isolation of the output signal is increased by adding isolation resistance at the bigger current than other section of the resonator.

目錄
口試委員會審定書 I
誌謝 I
摘要 II
ABSTRACT III
圖目錄 I
表目錄 V
第一章 緒論 1
1-1. 研究動機 1
1-2. 文獻探討 2
1-3. 論文貢獻和章節概要 6
第二章 基本設計理論 7
2-1. 多模態截線負載型共振器分析 7
2-2. 耦合矩陣 10
2-3. 濾波功率分波器設計 11
2-3-1. 二階濾波功率分波器設計 11
2-3-2. 三階濾波功率分波器設計 18
第三章 第一型整合濾波功率分波器之雙工器之設計 22
3-1. 第一型整合二階濾波功率分波器之雙工器 22
3-1-1. 設計概念 22
3-1-2. 電路設計 (板厚:1.524 mm) 23
3-1-3. 模擬與量測結果 29
3-1-4. 電路設計 (板厚:0.508 mm) 32
3-1-5. 模擬與量測結果 36
3-1-6. 結果比較 39
3-2. 第一型整合三階濾波功率分波器之雙工器 40
3-2-1. 設計概念 40
3-2-2. 電路設計 (板厚:1.524 mm) 41
3-2-3. 模擬與量測結果 46
3-2-4. 電路設計 (板厚:0.508 mm) 49
3-2-5. 模擬與量測結果 54
3-2-6. 結果比較 57
第四章 第二型整合濾波功率分波器之雙工器之設計 58
4-1. 第二型整合二階濾波功率分波器之雙工器 58
4-1-1. 設計概念 58
4-1-2. 電路設計 59
4-1-3. 模擬與量測結果 64
4-1-4. 結果比較 67
4-2. 第二型整合三階濾波功率分波器之雙工器 68
4-2-1. 設計概念 68
4-2-2. 電路設計 69
4-2-3. 模擬與量測結果 74
4-2-4. 結果比較 77
第五章 結論 78
參考文獻 79


[1]S. S. Oh and Y. S. Kim, “A compact diplexer for IMT-2000 handsets using microstrip slow-wave open-loop resonators with high-impedance meander lines,” in Radio Wireless Conf., Aug. 2001, pp. 177–180.
[2]C. M. Tsai, S. Y. Lee, C. C. Chuang, and C. C. Tsai, “A folded coupled line structure and its application to filter and diplexer design,” in IEEE MTT-S Int. Microw. Symp.Dig., Jun. 2002, pp. 1927–1930.
[3]E. Goron, J.-P. Coupez, C. Person, Y. Toutain, H. Lattard, and F. Perrot, “Accessing to UMTS filtering specifications using new microstrip miniaturized loop-filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. 1599–1602.
[4]G. A. Lee, M. Megahed, and F. D. Flaviis, “Design of multilayer spiral inductor resonator filter and diplexer for system-in-a-package,” in IEEE MTT-S Int. Microw.Symp. Dig., Jun. 2003, pp. 527–530.
[5]Y. Toutain, C. Person, and J. P. Coupez, “Design and implementation of a compact microstrip Tx/Rx diplexer for UMTS equipments,” in Proc. Int. MIKON’02 Conf., 2002,pp. 187–190.
[6]T. Yang, P.-L. Chi, and T. Itoh, “Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer,” IEEE Trans. Microw. Theory Tech., vol. 59,no. 2, pp. 260–269, Feb. 2011.
[7]A. F. Sheta, J. P. Coupez, G. Tanne, S. Toutain, and J. P. Blot, “Miniature microstrip stepped impedance resonator bandpass filters and diplexers for mobile communications,”in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1996, pp. 607–610.
[8]P.-H. Deng, C. H. Chen, B.-L. Huang, J.-H. Jheng, H.-H. Tung, and P.-T. Chiu, “Design of wideband diplexer using broadside-coupled filters and stepped-impedance resonators,” in 2010 Asia-Pacific Microw. Conf., Dec. 2010, pp. 25–28.
[9]H. Liu, W. Xu, Z. Zhang, and X. Guan, “Compact diplexer using slotline stepped impedance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 75–77,Feb. 2013.
[10]C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw.Theory and Tech., vol. 54, no. 5, pp. 1945–1952, May 2006.
[11]C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “A miniaturized microstrip common resonator triplexer without extra matching network,” in 2006 Asia-Pacific Microw. Conf.,Yokohama, Japan, Dec. 2006, pp. 1439–1442.
[12]H.-W. Wu, K. Shu, R.-Y. Yang, M.-H. Weng, J.-R. Chen, and Y.-K. Su, “Design of a compact microstrip triplexer for multiband applications,” in 2007 European Microw.Conf., Munich, Oct. 2007, pp. 834–837.
[13]M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583–585, Nov. 2011.
[14]S. Tantiviwat, “Wide-stopband, compact microstrip diplexer with common resonator using stepped-impedance resonators,” in TENCON Spring Conf., Apr. 2013, pp. 174–177.
[15]T. Yang and G. M. Rebeiz, “Three-pole 1.3–2.4-GHz diplexer and 1.1–2.45-GHz dual-band filter with common resonator topology and flexible tuning capabilities,” IEEE Trans.Microw. Theory and Tech., vol. 61, no. 10, pp. 3613–3624, Oct. 2013.
[16]B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodicstub diplexer for multiple-frequency applications,” IEEE Trans. Microw. Theory Tech.,vol. 49, no. 10, pp. 1818–1820, Oct. 2001.
[17]S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M.Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101–103, Feb. 2005.
[18]C.-F. Chen, C.-Y. Lin, B.-H. Tseng, and S.-F. Chang, “High-isolation and highrejection microstrip diplexer with independently controllable transmission zeros,”IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 851–853, Dec. 2014.
[19]T. Yang, P.-L. Chi, and T. Itoh, “High isolation and compact diplexer using the hybrid resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 551–553, Oct. 2010.
[20]P.-H. Deng, M.-I. Lai, S.-K. Jeng, and C.-H. Chen, “Design of matching circucircuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw.Theory Tech., vol. 54, no. 12, pp. 4185–4192, Dec. 2006.
[21]S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wideband communication systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp.1370–1378, Apr. 2006.
[22]S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4,pp. 197–199, Apr. 2011.
[23]C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wireless Compon. Lett., vol.21, pp. 534–536, Oct. 2011.
[24]J.-Y. Wu, K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol.22, no. 4, pp. 173–175, Apr. 2012.
[25]H.-W. Wu, S.-H. Huang, and Y.-F. Chen, “Design of new quad-channel diplexer with compact circuit size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240–242, May 2013.
[26]J.-Y. Shao, S.-C. Huang and Y.-H. Pang, “Wilkinson power divider incorporating quasi-elliptic filters for improved out-of-band rejection,” Electron. Lett., vol. 47, no. 23, pp. 1288–1289, Nov. 2011.
[27]P. Cheong, K.-I. Lai and K.-W. Tam, “Compact Wilkinson power divider with simultaneous bandpass response and harmonic suppression,” in IEEE MTT-S Int. Microw.Symp. Dig., Anaheim, CA, May 2010, vol. 1, pp. 1588–1591.
[28]Y. C. Li, Q. Xue, and X. Y. Zhang, “Single- and dual-band power dividers integrated with bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1,pp. 69–76, Jan. 2013.
[29]C.-F. Chen, T.-Y. Huang, T.-M. Shen, and R.-B. Wu, “Design of miniaturized filtering power dividers for system-in-a-package,” IEEE Trans. Comp., Packag.,Manufact. Technol., vol. 3, no. 10, pp. 1663–1672, Oct. 2013.
[30]C.-F. Chen and C.-Y. Lin, “Compact microstrip filtering power dividers with good in-band isolation performance,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 1,pp. 17–19, Jan. 2014.
[31]X. Y. Zhang, K.-X. Wang, and B.-J. Hu, “Compact filtering power divider with enhanced second-harmonic suppression,” IEEE Microw.Wireless Compon. Lett., vol. 23,no. 9, pp. 483–485, Sep. 2013.
[32]B. Lee , S. Nam, and J. Lee, “Filtering power divider with reflectionless response and wide isolation at output ports,” IEEE Trans.Microw. Theory and Tech., vol. 67, no. 7, July 2019.
[33]X. Wang , J. Wang , G. Zhang , J. Hong , and W. Wu, “Design of out-of-phase filtering power divider based on slotline and microstrip resonator,” IEEE Transactions on Components, Packaging and Manufactuing Technology, vol. 9, no. 6, June 2019.
[34]H.Zhu , J.-Y. Lin , and Y. J. Guo, “Filtering balanced-to-single-ended power dividers with wide range and high level of common-mode suppression,” IEEE Trans.Microw. Theory and Tech., vol.67,no.12,December 2019.
[35]W. Feng , W. Che, Y. Shi, Q. Xue, Y. C. Li, X. Y. Zhou, “High selectivity balanced-to-unbalanced filtering power dividers using dual-mode ring resonators,” IEEE Transactions on Components, Packaging and Manufactuing Technology, vol.9,no.5, May 2019.
[36]W. Feng, X. Ma, R. Gómez-García, Y. Shi, W. Che, Q. Xue, “Multi-Functional Balanced-to-Unbalanced Filtering Power Dividers With Extended Upper Stopband,” IEEE Transactions on circuits and systems—II: express briefs, vol. 66, no. 7, July 2019
[37]F. Wei , Z.-J. Yang, P.-Y. Qin , Y. J. Guo , B. Li , and X.-W. Shi, “A balanced-to-balanced in-phase filtering power divider with high selectivity and isolation,” IEEE Trans.Microw. Theory and Tech., vol. 67, no. 2, Febulary 2019.
[38]M. Luo, X.-H. Tang, D. Lu, Y.-H. Zhang, Y. Liu, X. Xu, and Y. Cao, “Balanced-to-balanced gysel filtering power divider with arbitrary power division,” IEEE Access, vol.8, pp. 36454–36463, 2020.
[39]H. Hao and X. Ni,“Wideband filtering power divider with wide rejection bandwidth and isolation,” Electron. Lett vol. 55 no. 7 pp. 395–396, April 2019
[40]G. Shen, W. Feng and W. Che, “Compact filtering power divider with extended stopband using out-of-phase feeding scheme,”Electron. Lett vol. 55 no. 7 pp. 1347–1349, December 2019
[41]C. Wu, F. Xiao, H. Wang, Y. C. and Y. Sun, “Quasi-elliptic bandpass filtering power divider with ultra-wide stopband,” Electron. Lett vol. 56 no. 9 pp. 449–450, April 2020
[42]Q. Li, Y. Zhang, and Y. Fan, “Dual-band in-phase filtering power dividers integrated with stub-loaded resonators,” IET Microw., Antennas Propag., vol. 9, no.7, pp. 695–699, May 2015.
[43]C. Cai, J. Wang, Y. Deng, and J.-L. Li, “Design of compact dual-mode dual-band filtering power divider with high selectivity,” Electron. Lett., vol. 51, no. 22,pp. 1795–1796, Oct. 2015.
[44]G. Zhang, J. Wang, L. Zhu, and W. Wu, “Dual-band filtering power divider with high selectivity and good isolation,” IEEE Microw. Wireless Compon. Lett., vol. 26,no. 10, pp. 774–776, Oct. 2016.
[45]C. Shao, Y. Li, and J.-X. Chen, “Compact dual-band microstrip filtering power divider using T-junction structure and quarter-wavelength SIR,” Electron. Lett., vol.53, no. 6, pp. 434–436, Jan. 2017.
[46]Y. Wu, Z. Zhuang, G. Yan, Y. Liu, and Z. Ghassemlooy, “Generalized dual-band unequal filtering power divider with independently controllable bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3838–3848, Oct. 2017.
[47]X. Wang, J. Wang, G. Zhang, J. S. Hong, and W. Wu, “Dual-wideband filtering power divider with good isolation and high selectivity,” IEEE Microw. Wireless Compon.Lett., vol. 27, no. 12, pp. 1071–1073, Dec. 2017.
[48]G. Zhang , X. Wang , and J. Yang, “Dual-band microstrip filtering power divider based on one single multimode resonator,” IEEE Microw. Wireless Compon. Lett., vol.28, no. 10, pp. 891–893, Oct. 2018.
[49]F. Huang, J. Wang , J. Hong , and W. Wu, “A new blanced-to-ubalanced filtering power divider with dual controllable passbands and enhanced in-band common-mode suppression,” IEEE Trans. Microw.Theory Tech., vol. 67no. 2, February 2019
[50]P.Wen , Z. Ma, H. Liu , S. Zhu, B.Ren , Y. Song, X. Wang, and M. Ohira , “Dual-band filtering power divider using dual-resonance resonators with ultrawide stopband and good isolation,” IEEE Microw. Wireless Compon.Lett., vol. 29, no. 2, pp. 101–103, Feb. 2019.
[51]L. Chen , F. Wei , X. Y. Cheng, and Q. K. Xiao, “A dual-band balanced-to-balanced power divider with high selectivity and wide stopband,” IEEE Access, vol.7, pp. 40114-40119,2019.
[52]M. Mirzaei and A. Sheikhi, “Design and implementation of microstrip dual-band filtering power divider using square-loop resonator,” Electron. Lett., vol. 56, no. 1, pp. 19–21, Jan.2020.
[53]Y. Rao, H.J.Qlan, B.Yang, R.GÓMEZ-GARCÍA ,and X. Luo, “Dual-band bandpass filter and filtering power divider with ultra-wide upper stopband using hybrid microstrip/DGS dual-resonance cells,” IEEE Access, vol.8, pp. 23624-23637,2020.
[54]G. Zhang, X. Zhang, Z. Qian, J. Yang, “Analysis and design of compact four-way single- and dual-band filtering power dividers on a new adjustable multi-mode topology,” IET Microw. Antenna Propag., vol. 14, no. 5, pp. 381–389, Feb. 2020.
[55]P.-L. Chi ,Y.-M. Chen, and T. Yang , “Single-layer dual-band balanced substrate-integrated waveguide filtering power divider for 5G millimeter-wave applications,” IEEE Microw. Wireless Compon.Lett., vol. 30, no. 6, pp. 585–588, June. 2020.
[56]B. Zhang and Y. Liu, “Wideband filtering power divider with high selectivity,”Electron. Lett, vol. 51, no. 23, pp. 1950–1952, Nov. 2015.
[57]Y. Wu, Z. Zhuang, Y. Liu, L. Deng, and Z. Ghassemlooy, “Wideband filtering power divider with ultra-wideband harmonic suppression and isolation,” IEEE Access, vol.4, pp. 6876–6882, 2016.
[58]X. Wang, J. Wang, and G. Zhang, “Design of wideband filtering power divider with high selectivity and good isolation,” Electron. Lett., vol. 52, no. 16, pp. 1389–1391, 2016.
[59]K. D. Xu , Y. Bai, X. Ren , and Q. Xue , “Broadband filtering power dividers using simple three-line coupled structures,” IEEE Transactions on Components, Packaging and Manufactuing Technology, vol.9,no.6, June 2019.
[60]Y.Wang, F. Xiao, Y. Cao, Y. Zhang, and X. Tang, “Novel wideband microstrip filtering power divider using multiple resistors for port isolation,” IEEE Access, vol.7, pp. 61868-61873,2019.
[61]C. Zhu and J. Zhang, “Design of high-selectivity asymmetric three-way equal wideband filtering power divider,” IEEE Access, vol.7, pp. 55329-55335,2019.
[62]S. Li, X. Wang, J. Wang and L. Ge, “Design of compact single-ended-to-balanced filtering power divider with wideband common-mode suppression,” Electron. Lett., vol. 55, no. 17, pp. 947–949, Aug 2019.
[63]G.Zhang , Z. Qian, J. Yang , and J.-S. Hong, “Wideband four-way filtering power divider with sharp selectivity and high isolation using coshared multi-mode resonators,” IEEE Microw. Wireless Compon.Lett., vol. 29, no. 10, pp. 641–644, Oct 2019.
[64]G. Zhang, J. Wang, L. Zhu, and W. Wu, “Dual-mode filtering power divider with high passband selectivity and wide upper stopband,” IEEE Microw. Wireless Compon.Lett., vol. 27, no. 7, pp. 642–644, Jul. 2017.
[65]G. Zhang, X. Wang, J.-S. Hong, and J. Yang, “A high-performance dual-mode filtering power divider with simple layout,” IEEE Microw. Wireless Compon. Lett. ,vol. 28, no. 2, pp. 120–122, Feb. 2018.
[66]C. Zhu, J. Xu, W. Kang, and W. Wu, “Microstrip multifunctional reconfigurable wideband filtering power divider with tunable center frequency, bandwidth, and power division,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2800–2813, Jun.2018.
[67]C.-F. Chen, C.-Y. Lin, B.-H. Tseng, and S.-F. Chang, “Compact microstrip electronically tunable power divider with Chebyshev bandpass response,” in Proc.Asia Pacific Microw. Conf., Nov. 2014, pp. 1291–1293.
[68]P.-L. Chi and T. Yang, “A 1.3–2.08 GHz filtering power divider with bandwidth control and high in-band isolation,” IEEE Microw. Wireless Compon. Lett., vol. 26,no. 6, pp. 407–409, Jun. 2016.
[69]D. Psychogiou, R. Gómez-García, A. C. Guyette, and D. Peroulis, “Reconfigurable single/multi-band filtering power divider based on quasi-bandpass sections,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 684–686, Sep. 2016.
[70]R. Gómez-García, D. Psychogiou, and D. Peroulis, “Fully-tunable filtering power dividers exploiting dynamic transmission-zero allocation,” IET Microw. Antenna Propag., vol. 11, no. 3, pp. 378–385, Feb. 2017.
[71]S.-F. Chao and W.-C. Lin, “Filtering power divider with good isolation performance,” Electron. Lett., vol. 50, no. 11, pp. 815–817, May 2014.
[72]R. Gómez-García , J.-M. Muñoz-Ferreras , and D. Psychogiou, “ RF reflectionless filtering power dividers,” IEEE Transactions on circuits and systems—II: express briefs, vol. 66, no. 6, June 2019.
[73]D. Lu , M. Yu , N. Scott Barker , M. Li, and S.-W. Tang, “A Simple and General Method for Filtering Power Divider With Frequency-Fixed and Frequency-Tunable Fully Canonical Filtering-Response Demonstrations,” IEEE Trans. Microw. Theory Techn.,vol. 67, no. 5, pp. 1812–1825, May. 2019.
[74]C.-J. Chen and Z.-C. Ho, “Design equations for a coupled-line type filtering power divider,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 3, pp. 257–259,Mar. 2017.
[75]M.-T. Chen and C.-W. Tang, “Design of the filtering power divider with a wide passband and stopband,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 7, pp.570–572, Jul. 2018.
[76]M.S. Sorkherizi, A. Vosoogh, A.A. Kishk, and P.-S. Kildal, “Design of integrated diplexer-power divider,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA,USA, May 2016, pp. 1–3.
[77]G. Zhang, Z. Qian, and J. Yang, “Design of a compact microstrip power-divider diplexer with simple layout,” Electron. Lett., vol. 54, no. 16, pp. 1007–1009, Aug.2018.
[78]P.-H. Deng, W. Lo, B.-L. Chen, and C.-H. Lin, “Designs of diplexing power dividers,” IEEE Access, vol. 6, pp. 3872–3881, 2018.
[79]C.-F. Chen, K.-W. Zhou, R.-Y. Chen, Z.-C. Wang, and Y.-H. He, “Design of a microstrip diplexer-integrated filtering power divider,” IEEE Access, vol.7, pp. 106514-106520, 2019.
[80]C-H Lin, P-H Deng, W-T Chen, “Design of a Microstrip Diplexing Filtering Power Divider,” in 2019 Asia-Pacific Microw. Conf., Marina Bay Sands, Singapore, Dec. 2019, pp. 944–946
[81]C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw.Theory Tech., vol. 59, no. 4, pp. 848–856, Apr. 2011.
[82]R.J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE Trans. Microw. Theory Techn., vol. 51, no.1, pp. 1-10, Jan. 2003.
[83]C. K. Liao, P. L. Chi, and C. Y. Chang, “Microstrip realization of generalized Chebyshev filters with box-like coupling schemes,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 1, pp. 147–153, Jan. 2007.
[84]J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Application. New York: Wiley, 2001.
[85]G.Macchiarella, “Generalized coupling coefficient for filters with non-resonant nodes,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 773–775, Dec. 2008.
[86]Rogers Corporation, “RO4000® Series High Frequency Circuit Materials,” Rogers RO4003C datasheet, 2018.

電子全文 電子全文(網際網路公開日期:20250811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊