(3.235.108.188) 您好!臺灣時間:2021/02/25 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳岳霖
研究生(外文):WU,YUE-LIN
論文名稱:鎂摻雜於四氧化鋅二鈷半導體薄膜之微結構與光電性質研究及應用
論文名稱(外文):The Study and Applications of Magnesium-doping on the Microstructures and Optoelectronic Properties of ZnCo2O4 Semiconductor Thin Films
指導教授:苗新元林士弘林士弘引用關係游瑞松
指導教授(外文):MIAO, HSIN-YUANLIN, SHIH-HUNGYU, RUEI-SUNG
口試委員:沈俊旭苗新元劉日新游瑞松林士弘
口試委員(外文):SHEN, CHUN-HSUMIAO, HSIN-YUANLIU, JIH-HSINYU, RUEI-SUNGLIN, SHIH-HUNG
口試日期:2020-07-29
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:109
中文關鍵詞:四氧化鋅二鈷鎂摻雜薄膜光電性能抗菌性能
外文關鍵詞:ZnCo2O4Mg-dopedThin FilmsPhotoelectric propertiesAntibacterial properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文為了改善尖晶石ZnCo2O4薄膜的材料特性,以外質摻雜鎂的方式,增進半導體電學性質,同時研究摻雜效應所影響的晶體結構、光電特性以及薄膜是否具備抗菌之特性。
  鎂摻雜於ZnCo2O4薄膜中均具有奈米晶粒,且尺寸隨著退火溫度的上升而增加,在鎂摻雜含量比由0增加至0.17並無發現二次相結構的產生。鎂置換鈷元素會使得薄膜原子晶格排序的規則性下降,造成平均晶粒尺寸及表面的粗糙度減少。所有薄膜在波長550nm的透光率約為32%~37%。未摻雜的ZnCo2O4薄膜直接能隙值為2.10 eV,摻雜鎂後能隙值的範圍改變為2.02~2. 09 eV。正二價鎂可以置換正三價鈷促使載子濃度增加,造成Zn(Co1-xMgx)2O4電阻率由1.16×102 Ω-cm(x=0)下降至4.3×101 Ω-cm(x=0.11)。
  抗菌方面,在UV光照射以及在沒有任何光源的環境中,大腸桿菌以及金黃色葡萄球菌無法在此薄膜上進行繁殖及生存,材料的抗菌率均可達99%以上,摻雜鎂於ZnCo2O4具有優異的抗菌應用潛力。

  In this study, in order to improve the material properties of spinel ZnCo2O4 thin films, the electrical properties of semiconductors were enhanced by extrinsic Magnesium-doping. We studied the crystal structure, microstructure, photoelectric properties and antibacterial properties of doping effects on the ZnCo2O4.
  Magnesium-doped ZnCo2O4 films have nano-crystalline grains, and the size increases with the increase of annealing temperature. When the doping content ratio increased from x=0 to 0.17, no secondary phase structure formed. The replacement of cobalt by Magnesium causes decreasing effect on the atomic lattice order, resulting in a decrease in the average grain size and a reduction in the roughness of the surface. The transmittance of all films was about 32% ~ 37% at 550 nm. The direct band gap of the un-doped ZnCo2O4 film was 2.10 eV, and the band gaps of the Magnesium-doped ZnCo2O4 were 2.02~2.09 eV. The positive divalent Magnesium can replace positive trivalent cobalt to increase the carrier concentration, resulting in a decrease in resistivity from 1.16×102 Ω-cm(x=0) to 4.3×101 Ω-cm(x=0.11).
  The anti-S. aureus and E. coli abilities of the films had more than 99% in the UV light irradiation and in the absence of any light source. The p-type Zn(Co1-xMgx)2O4 film can be applied to the antibacterial and electronic component.

目錄 III
圖目錄 V
表目錄 VII
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 ZnCo2O4之文獻回顧 4
1.4 論文組織架構 11
第2章 實驗原理 13
2.1 透明導電薄膜 13
2.1.1 透明導電薄膜之歷史 13
2.1.2 透明導電薄膜之光學特性 14
2.1.3 透明導電薄膜之電學特性 16
2.2 薄膜沉積機制 18
2.3 薄膜成長模式 21
2.4 溶膠—凝膠法(Sol - Gel) 23
2.4.1 溶膠—凝膠之歷史 23
2.4.2 溶膠—凝膠之簡介 25
2.4.3 溶膠—凝膠法之原理及應用 26
2.5 物理氣相沉積(Physical Vapor Deposition, PVD) 31
2.5.1 蒸鍍(Evaporation) 31
2.5.2 濺鍍(Sputtering) 35
2.6 電流傳導機制 38
2.6.1 電極限制電流機制 38
2.6.2 限制電流機制 41
2.7 ZnCo2O4之晶體結構 45
第3章 實驗方法與分析 49
3.1 實驗材料 49
3.2 前驅物調製 50
3.3 實驗設備 52
3.3.1 電磁加熱攪拌器(Hot plant and magnetic stirrer) 52
3.3.2 旋轉塗佈機 (Spin Coaters) 53
3.3.3 高溫方形爐 (Muffle Furnace) 54
3.4 實驗流程 55
3.5 實驗分析及鑑定儀器 56
3.5.1 高解析X光繞射儀(High Resolution X-ray Diffractometer, HRXRD) 57
3.5.2 場發射掃描式電子顯微鏡 (FESEM) 59
3.5.3 紫外線/可見光分光光譜儀 (UV-Vis) 62
3.5.4 霍爾效應分析儀(Hall Effect Analyzer) 63
3.5.5 輕敲式原子力顯微鏡 (AFM) 65
3.5.6 多功能聚焦離子束系統(FIB) 66
3.5.7 高解析穿透式電子顯微鏡 (HRTEM) 68
第4章 實驗結果與討論 71
4.1 ZnCo2O4 摻雜Mg研究前論 71
4.2 晶體結構分析 72
4.3 薄膜表面微結構分析 79
4.4 薄膜光學性質分析 91
4.5 薄膜直接能隙 92
4.6 電學性質量測 95
4.7 抗菌測試 96
第5章 結論 101
參考文獻 103
附錄 106

[1]郭倩丞、李正中 (2011),透明導電薄膜特性及光電元件應用,智庫文章引述。
[2]Lee, S. H., S. Lim, and H. Kim.,“Smooth-Surface Silver Nanowire Electrode with High Conductivity and Transparency on Functional Layer Coated Flexible Film”, Thin Solid Films, vol. 589, pp. 403-407, Aug. 2015.
[3]楊明輝,”透明導電膜材料與成膜技術的新發展”,工業材料,第189期, 2000,pp.161~174。
[4]X. L. Wen, Z. Chen, E. H. Liu, X. Lin, “Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition”, Appl. Surf. Sci. vol. 357, pp. 1212-1216, Dec. 2015.
[5]H. J. Kim, I. C. Song, J. H. Sim, H. Kim, D. Kim, Y. E. Ihm, W. K. Choo, “ Structural and transport properties of cubic spinel ZnCo2O4 thin films grown by reactive magnetron sputtering”, Solid State Commun. vol. 129, pp. 627-630, Mar. 2004.
[6]Z. Chen, X. L. Wen, L. W. Niu, M. Duan, Y. J. Zhang, X. L. Dong, R. L. Zhang, C. L. Chen, “Transport and magnetic properties of ZnCo2¬O4/Si heterostructures grown by radio frequency magnetron sputtering”, Thin Solid Films ,vol. 573, pp. 90-94, Dec.2014.
[7]H. Behzad, F. E. Ghodsi, “Effect of Zn content on the structural, optical, electrical and supercapacitive properties of sol–gel derived ZnCo2O4 nanostructured thin films”, J. Mater. Sci. - Mater. Electron. , vol. 27, pp. 6096-6107, Feb. 2016.
[8]X. Wei, D. Chen, W. Tang,” Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method”, Mater. Chem. Phys, vol. 103, pp. 54-58, May 2007.
[9]C. P. Chen, C. H. Ying, “The characterization of sol-gel derived ZnCo2O4 thin film”, Thin Film Micro-Optics, pp.111-124, Jun. 2017.
[10]A. J. C. Mary, A. C. Bose, “Surfactant assisted ZnCo2O4 nanomater for upercapacitor application”, Appl. Surf. Sci, vol 449 , pp. 105-112, Feb. 2018.
[11] W. Fu, X. Li, C. Zhao, Y. Liu, P. Zhang, J. Zhou, X. Pan, E. Xie, “Facile hydrothermal synthesis of flowerlike ZnCo2O4 microspheres as binder-free electrodes for supercapacitors”, Mater. Lett. vol. 149, pp. 1-4, Jun. 2015.
[12]A. J. C. Mary, A. C. Bose, “Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor”, Mater. Lett. vol. 117, pp. 62-65, Dec. 2014.
[13]Y. Pan, H. Gao, M. Zhang, L. Li, Z. Wang, “Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes”, J. Alloys Compd, vol. 702, pp. 381-387, Apr. 2017.
[14]L. Pan, Q. Zhu, D Tian, “Synthesis of porous Ag/ZnCo2O4 nanosheets and their electrocatalytic, photocatalytic, and antibacterial performances”, J. Sol-Gel Sci. Technol., vol 9, pp. 1-10, Feb. 2019.
[15]F. Streintz, Annals of Physics, (Leipzig), vol 9, pp. 854, (1902).
[16]K. Badeker, Annals of Physics, (Leipzig), vol 22, pp. 749, (1907).
[17]J.T. Littleton, U.S. Patent 2, vol 118, pp. 795, (1938).
[18]H.A. McMaster, U.S. Patent 2, vol 429, pp. 420, (1947).
[19]G. Rupprecht, Z. fiir Physik vol 139, pp. 504, (1954).
[20]張天益, 利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究, 國立成功大學, Nov. 2003.
[21]Brinker CJ, Scherer GW. , “Sol gel science: the physics and chemistry of sol gel” processing academic press, Oct. 1990.
[22]蘇于展.摻雜鈣與鎳於四氧化鋅二鈷之結構與光電性質分析, 亞洲大學, Apr. 2019.
[23]D. A. Neamen, “Semiconductor Physics and Devices”, McGraw-Hill Science Inc., New York, 2002.
[24]王琮鴻.金屬/氧化鋯/半導體電容器與場效電晶體之製作與電性分析, 國立清華大學碩士, 2004.
[25]J. C. Ranuarez, M. J. Deen, Chih-Hung Chen, “A Review of Gate Tunneling Current in MOS Devices”, Microelectronics Reli., vol 46, pp. 1939–1956, Dec. 2006.
[26]S. M. Sez, “Physics of Semiconductor Devices”, 2nd Edition, John Wiley & Sons Inc., New York, USA. , 1981.
[27]T. Irifune, K. Fujino, E. Ohtani, “A new high-pressure form of MgAl2O4”, Nat, pp.409-411, 1991.
[28]E. H. Hall, “On a New Action of the Magnet on Electric Currents”, Am. J. Math, vol 3, pp. 287-292, 1897.
[29]R.S.Yu, T.C.Hung, “Influences of oxygen incorporation on the structural and optoelectronic properties of CuZnS4 thin flims”, Appl. Surf. Sci., vol 364, p.p. 909-916, Dec. 2016.
[30]R.S.Yu, Y.F.Lee, Y.S.Lai, “Synthesis and Optoelectronic Properties of CuFeO2 Semiconductor Thin Films”, ECS J. Solid State Sci. Technol., vol 5, p.p. 646-652, Oct.2016.

電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔