(3.238.186.43) 您好!臺灣時間:2021/03/05 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:韋汶言
研究生(外文):WEI, WEN-YEN
論文名稱:磁性金屬有機骨架/奈米碳管複合材料之製備及應用
論文名稱(外文):Preparation and Application of Composites of Magnetic Metal Organic Frameworks/CNTs
指導教授:張瓊芬張瓊芬引用關係
指導教授(外文):CHANG, CHIUNG-FEN
口試委員:梁振儒官文惠秦靜如林怡利張瓊芬
口試委員(外文):LIANG, CHEN-JUKUAN, WEN-HUIMONICA CHIN, CHING-JULIN, YI-LICHANG, CHIUNG-FEN
口試日期:2020-06-24
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:155
中文關鍵詞:金屬有機骨架奈米碳管微波消化法磁性金屬有機骨架磁性顆粒
外文關鍵詞:metal-organic frameworkcarbon nanotubemicrowaveMMOFsmagnetic particle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬有機骨架(Metal-Organic Frameworks, MOFs)是一種無機金屬簇或離子與有機配位基結合的高度多孔材料,其具高度有序的結構、高孔隙率、高比表面積、可設計自身結構,這些特點使得MOFs成為優良的吸附材料,廣泛應用於氣體吸附分離、藥物傳輸、觸媒催化反應以及廢水處理上。有研究表示通過與其他材料的結合,能夠有效提高MOFs的性能,如奈米碳管(Carbon Nanotubes, CNTs)或是殼聚醣(Chitosan, CS)等。其中CNTs具獨特的構造,有良好的熱穩定性、導電性與疏水性,而CS具優異的螯合性能,結構中的氨基基團反應活性強,使其具有優異的生物學功能並能進行化學修飾反應,集結MOFs與CNTs、CS的優點,期望可以製作出性能優異的複合材料。因MOFs為微細粉末狀,在固液分離上無法全回收,若將其賦予磁性,為磁性MOFs(Magnetic Metal-Organic Frameworks, MMOFs),能有效減少材料的分離時間和能耗,還能以簡單的方式精準定位,這使得其應用性大大提升。通過使用微波法,可以以更短的時間合成MOF,且還有快速成核、高產率這些優點。本研究利用微波法製備MOF複合材料,以最佳產率及其物化特性評估出最適合成條件,再利用此條件添加磁性載體進而合成MMOF與CS/MMOF複合材料。合成的材料通過SEM、TEM、XRD、FTIR、BET、TGA、pHpzc、SQUID與穩定性實驗以了解其物理化學性質,而為了瞭解應用在水環境上的可行性,將MOF與MMOF複合材料作為吸附劑,去除水中污染物亞甲基藍(Methylene blue, MB),建立吸附動力模式及等溫吸附曲線以了解材料進行吸附之傳輸途徑。實驗結果顯示,根據SEM、TEM觀察其外觀結構,XRD、FTIR進行晶相與官能基鑑定,證實成功合成MOF、MMOF與CS/MMOF複合材料,而BET比表面積分析可得知MOF與MMOF複合材料最高比表面積分別為1263.30 m2/g、1287.38 m2/g,TGA結果得知添加越多CNTs量,重量損失越少,經SQUID測試所得結果,最大飽和磁化強度為4.26 emu/g。MOF複合材料與MMOF複合材料之吸附動力學結果皆與Elovich rate equation模擬較為吻合,而等溫吸附曲線則與Langmuir isotherm及Freundlich isotherm皆為吻合。經水穩定性實驗,得知CS@MMOF複合材料在水中穩定性高。本研究成功以微波法合成MMOF複合材料,並應用於水中污染物之吸附去除。
Metal-Organic Frameworks are fabricated through linking metal ions and organic linkers. They have many advantages such as large surface areas, high pore volume, and the selection of the organic ligand and metal. Due to these reasons, MOFs are excellent adsorption materials. They are being used in various applications such as gas storage, drug delivery and wastewater treatment. A research finds some materials can improve MOF properties, such as carbon nanotube and chitosan. Due to the unusual electrical, thermal and hydrophobic properties of CNTs, CNTs are used as composite fillers in various applications. Chitosan is a biodegradable polymeric material with exceptional chelating properties and chemical reactivity due to the presence of hydroxyl and amino groups. Combining the advantages of MOFs, CNTs, and CS, it is expected that composite materials with excellent performance can be synthesized. Because MOFs are powders, they cannot be fully recovered in solid-liquid separation. Adding magnetic particles to MOF is the Magnetic Metal-Organic Frameworks, which can effectively reduce the separation time and energy consumption of materials, and locate in a simple way. It can improve the applicability of MOF. Since hydrothermal methods generally need up to several days, it is important to develop facile, rapid ways to the production. Recently, the microwave heating method has been applied successfully for the synthesis of metal-organic frameworks with high phase purity and high yield ,and decreasing reaction time of Cu-BTC synthesis up to a few minutes. This study uses microwave method to prepare MOF composite material. According to the best yield, physical and chemical properties, the most suitable conditions are evaluated. Add magnetic particles and use this condition to synthesize MMOF and CS/MMOF composite materials. And, the materials were characterized by SEM, TEM, XRD, FTIR, BET, TGA, pHpzc, SQUID and stability experiment. In order to understand the feasibility of application in the water environment, the MOF and MMOF composite materials were used in removal of MB. And the adsorption data were analyzed by adsorption isotherm and adsorption kinetics model to understand the transport path of the material for adsorption. The experimental results showed that the morphology was observed by SEM and TEM, and the crystal phase and functional groups were identified by XRD and FTIR, which confirmed that MOF, MMOF and CS/MMOF composite materials were successfully synthesized. BET specific surface area analysis shows that the highest specific surface areas of MOF and MMOF composites are 1,263.30 m2/g and 1,287.38 m2/g, respectively. TGA results show that the thermal stability of the microwave method is higher than that of the hydrothermal method. The SQUID result shows that the maximum saturation magnetization is 4.26 emu/g. The results of adsorption kinetics on MOF and MMOF are similar to Elovich rate equation model, and the adsorption isotherms are similar to both Langmuir isotherm and Freundlich isotherm. Through water stability experiments, it is known that the CS@MMOF composite material has high stability in water. In this study, the MMOF composite material was successfully synthesized by the microwave method and applied to removal of MB.
縮寫表 1
摘要 4
Abstract 6
目錄 8
表目錄 12
圖目錄 13
第一章、 緒論 16
1.1 研究背景 16
1.2 研究目的 17
1.3 研究流程 18
第二章、 文獻回顧 19
2.1金屬有機骨架材料(MOFs)之簡介 19
2.1.1 金屬有機骨架材料 19
2.1.2 金屬有機骨架之合成方法 21
2.2金屬有機骨架複合材料之簡介 24
2.2.1金屬有機骨架複合材料 24
2.2.2金屬有機骨架複合材料之合成方法 25
2.3 磁性金屬有機骨架材料(MMOFs)之簡介 33
2.3.1 磁性材料種類 33
2.3.2 磁性材料之介紹 34
2.3.2 磁性金屬有機骨架 35
2.3 亞甲基藍 36
2.4 吸附理論 38
2.4.1 等溫吸附模式 38
2.4.2 整體性動力模式 39
第三章、 研究方法與材料 43
3.1實驗藥品 43
3.2 實驗設備與分析儀器 44
3.2.1實驗設備 44
3.2.2分析儀器與器材 45
3.3金屬有機骨架之製備 46
3.4金屬有機骨架複合材料之合成程序 46
3.4.1 官能化MWCNTs材料製備 46
3.4.2 以微波法製備CNTs@Cu-BTC 46
3.4.3 以水熱法製備CNTs@Cu-BTC 46
3.5磁性金屬有機骨架之合成程序 47
3.5.1 磁性顆粒之製備 47
3.5.3 M/CNTs@Cu-BTC之製備 47
3.6 CS/M/CNTs@Cu-BTC之合成程序 48
3.6.1 CS/M/CNTs@Cu-BTC之製備 48
3.6.2 CS/M/CNTs@Cu-BTC於無氧環境之製備 48
3.7 亞甲基藍吸附實驗 49
3.7.1等溫吸附實驗 49
3.7.2吸附動力實驗 49
3.8 樣品穩定性實驗 49
3.9 零點電荷實驗 49
第四章、 結果與討論 50
4.1 CNTs@Cu-BTC 50
4.1.1 合成溫度對材料的影響 50
4.1.1.1 表面結構觀察(SEM) 51
4.1.1.2 晶相鑑定 52
4.1.1.3 官能基鑑定 53
4.1.2 合成時間對材料的影響 55
4.1.2.1 表面結構觀察(SEM) 56
4.1.2.2 晶相鑑定 57
4.1.2.3 官能基鑑定 58
4.1.3合成溶劑比例對材料的影響 60
4.1.3.1 表面結構觀察(SEM) 61
4.1.3.2 晶相鑑定 62
4.1.3.3 官能基鑑定 63
4.1.4 CNTs質量對材料的影響 65
4.1.4.1 表面結構觀察(SEM) 66
4.1.4.2 表面結構觀察(TEM) 68
4.1.4.3 晶相鑑定 69
4.1.4.4 官能基鑑定 70
4.1.5 合成方式對材料的影響 72
4.1.5.1 表面結構觀察(SEM) 73
4.1.5.2 晶相鑑定 74
4.1.5.3 官能基鑑定 75
4.1.6 比表面積分析 77
4.1.7 熱重分析 81
4.1.8 結論 83
4.2 M/CNTs@Cu-BTC 84
4.2.1 表面結構觀察(SEM與TEM) 85
4.2.2 晶相鑑定 87
4.2.3 官能基鑑定 88
4.2.4 比表面積分析 90
4.2.5 熱重分析 94
4.2.6 零電位點 96
4.2.7 飽和磁化強度 98
4.3 CNTs@Cu-BTC與M/CNTs@Cu-BTC之吸附特性分析 101
4.3.1 不同CNTs質量之CNTs@Cu-BTC對亞甲基藍之吸附量 101
4.3.2 CNTs@Cu-BTC對亞甲基藍之等溫吸附 104
4.3.3 CNTs@Cu-BTC對亞甲基藍之吸附動力學 106
4.3.4 M/CNTs@Cu-BTC對亞甲基藍之吸附量 111
4.3.5 M/CNTs@Cu-BTC對亞甲基藍之等溫吸附 112
4.3.6 M/CNTs@Cu-BTC對亞甲基藍之吸附動力學 114
4.3.7 CNTs@Cu-BTC與M/CNTs@Cu-BTC對亞甲基藍之吸附特性比較 119
4.4 CNTs@Cu-BTC與M/CNTs@Cu-BTC之穩定性探討 120
4.4.1 表面結構觀察(SEM) 120
4.4.2 官能基鑑定 124
4.5 CS/M/CNTs@Cu-BTC 128
4.5.1 表面結構觀察(SEM) 129
4.5.2 晶相鑑定 130
4.5.3 官能基鑑定 132
4.5.4 熱重分析 134
4.5.5 比表面積分析 135
4.5.6 飽和磁化強度 138
4.5.7 穩定性分析 140
4.6 創新性 145
第五章、 結論與建議 146
5.1 結論 146
5.2 建議 147
參考文獻 148

Abdi, J., Vossoughi, M., Mahmoodi, N. M., & Alemzadeh, I. (2017). Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal, 326, 1145-1158. doi:10.1016/j.cej.2017.06.054
Al-Kutubi, H., Gascon, J., Sudhölter, E. J. R., & Rassaei, L. (2015). Electrosynthesis of Metal-Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2(4), 462-474. doi:10.1002/celc.201402429
Anbia, M., & Hoseini, V. (2012). Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chemical Engineering Journal, 191, 326-330. doi:https://doi.org/10.1016/j.cej.2012.03.025
Azhar, M. R., Abid, H. R., Sun, H., Periasamy, V., Tade, M. O., & Wang, S. (2017). One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. J Colloid Interface Sci, 490, 685-694. doi:10.1016/j.jcis.2016.11.100
Blanita, G., Borodi, G., Lazar, M. D., Biris, A.-R., Barbu-Tudoran, L., Coldea, I., & Lupu, D. (2016). Microwave assisted non-solvothermal synthesis of metal–organic frameworks. RSC Advances, 6(31), 25967-25974. doi:10.1039/c5ra26097c
Cao, X., Liu, G., She, Y., Jiang, Z., Jin, F., Jin, M., . . . Wang, J. (2016). Preparation of magnetic metal organic framework composites for the extraction of neonicotinoid insecticides from environmental water samples. RSC Advances, 6(114), 113144-113151. doi:10.1039/c6ra23759b
Chen, D., Zhao, J., Zhang, P., & Dai, S. (2019). Mechanochemical synthesis of metal–organic frameworks. Polyhedron, 162, 59-64. doi:10.1016/j.poly.2019.01.024
Chen, L., Chen, H., & Li, Y. (2014). One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chem Commun (Camb), 50(94), 14752-14755. doi:10.1039/c4cc06568a
Chen, L., Chen, H., Luque, R., & Li, Y. (2014). Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem. Sci., 5(10), 3708-3714. doi:10.1039/c4sc01847h
Chen, X., Ding, N., Zang, H., Yeung, H., Zhao, R. S., Cheng, C., . . . Chan, T. W. (2013). Fe(3)O(4)@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J Chromatogr A, 1304, 241-245. doi:10.1016/j.chroma.2013.06.053
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., & Williams, I. D. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. AMER ASSOC ADVANCEMENT SCIENCE.
DeCoste, J. B., Peterson, G. W., Schindler, B. J., Killops, K. L., Browe, M. A., & Mahle, J. J. (2013). The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 1(38). doi:10.1039/c3ta12497e
Ge, L., Wang, L., Rudolph, V., & Zhu, Z. (2013). Hierarchically structured metal–organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture. RSC Advances, 3(47). doi:10.1039/c3ra44250k
Gong, X., Zhang, D., Duan, L., Meng, X., & Lin, W. (2019). Methane Storage and Synthesis of Metal-Organic Framework HKUST-1 Prepared With different Solvent. China Petroleum Processing and Petrochemical Technology
Gupta, S. S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Adv Colloid Interface Sci, 162(1-2), 39-58. doi:10.1016/j.cis.2010.12.004
Haque, E., Jun, J. W., & Jhung, S. H. (2011). Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater, 185(1), 507-511. doi:10.1016/j.jhazmat.2010.09.035
Hermes, S., Schroter, M. K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., . . . Fischer, R. A. (2005). Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed Engl, 44(38), 6237-6241. doi:10.1002/anie.200462515
Hu, J., Dai, W., & Yan, X. (2014). Comparison study on the adsorption performance of methylene blue and congo red on Cu-BTC. Desalination and Water Treatment, 57(9), 4081-4089. doi:10.1080/19443994.2014.988654
Huang, W., Zhou, X., Xia, Q., Peng, J., Wang, H., & Li, Z. (2014). Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4. Industrial & Engineering Chemistry Research, 53(27), 11176-11184. doi:10.1021/ie501040s
Iqbal, N., Wang, X., Yu, J., Jabeen, N., Ullah, H., & Ding, B. (2016). In situ synthesis of carbon nanotube doped metal–organic frameworks for CO2 capture. RSC Advances, 6(6), 4382-4386. doi:10.1039/c5ra25465e
Jabbari, V., Veleta, J. M., Zarei-Chaleshtori, M., Gardea-Torresdey, J., & Villagrán, D. (2016). Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chemical Engineering Journal, 304, 774-783. doi:10.1016/j.cej.2016.06.034
Jin, Y., Zhao, C., Sun, Z., Lin, Y., Chen, L., Wang, D., & Shen, C. (2016). Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Advances, 6(36), 30763-30768. doi:10.1039/c6ra01645f
Ke, F., Qiu, L.-G., Yuan, Y.-P., Jiang, X., & Zhu, J.-F. (2012). Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell. Journal of Materials Chemistry, 22(19). doi:10.1039/c2jm31167d
Ke, F., Yuan, Y.-P., Qiu, L.-G., Shen, Y.-H., Xie, A.-J., Zhu, J.-F., . . . Zhang, L.-D. (2011). Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. Journal of Materials Chemistry, 21(11). doi:10.1039/c0jm01770a
Khan, N. A., & Jhung, S.-H. (2009). Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3under Ultrasound. Bulletin of the Korean Chemical Society, 30(12), 2921-2926. doi:10.5012/bkcs.2009.30.12.2921
Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci, 284(1), 14-21. doi:10.1016/j.jcis.2004.09.063
Lee, Y.-R., Kim, J., & Ahn, W.-S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30(9), 1667-1680. doi:10.1007/s11814-013-0140-6
Li, L., Liu, X. L., Geng, H. Y., Hu, B., Song, G. W., & Xu, Z. S. (2013). A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. Journal of Materials Chemistry A, 1(35). doi:10.1039/c3ta11478c
Lin, S., Song, Z., Che, G., Ren, A., Li, P., Liu, C., & Zhang, J. (2014). Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous and Mesoporous Materials, 193, 27-34. doi:10.1016/j.micromeso.2014.03.004
Lu, G., Li, S., Guo, Z., Farha, O. K., Hauser, B. G., Qi, X., . . . Huo, F. (2012). Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem, 4(4), 310-316. doi:10.1038/nchem.1272
McKinstry, C., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V., & Sefcik, J. (2017). Scalable continuous production of high quality HKUST-1 via conventional and microwave heating. Chemical Engineering Journal, 326, 570-577. doi:10.1016/j.cej.2017.05.169
Nethaji, S., Sivasamy, A., & Mandal, A. B. (2012). Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Environmental Science and Technology, 10(2), 231-242. doi:10.1007/s13762-012-0112-0
Pichon, A., Lazuen-Garay, A., & James, S. L. (2006). Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 8(3). doi:10.1039/b513750k
Qiu, H., Lv, L., Pan, B.-c., Zhang, Q.-j., Zhang, W.-m., & Zhang, Q.-x. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-SCIENCE A, 10(5), 716-724. doi:10.1631/jzus.A0820524
Ren, X., Yang, C., Zhang, L., Li, S., Shi, S., Wang, R., . . . Wang, J. (2019). Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale, 11(24), 11830-11838. doi:10.1039/c9nr03612a
Salehi, S., & Anbia, M. (2017). High CO2 Adsorption Capacity and CO2/CH4 Selectivity by Nanocomposites of MOF-199. Energy & Fuels, 31(5), 5376-5384. doi:10.1021/acs.energyfuels.6b03347
Samuel, M. S., Subramaniyan, V., Bhattacharya, J., Parthiban, C., Chand, S., & Singh, N. D. P. (2018). A GO-CS@MOF [Zn(BDC)(DMF)] material for the adsorption of chromium(VI) ions from aqueous solution. Composites Part B: Engineering, 152, 116-125. doi:10.1016/j.compositesb.2018.06.034
Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027
Seo, Y.-K., Hundal, G., Jang, I. T., Hwang, Y. K., Jun, C.-H., & Chang, J.-S. (2009). Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous and Mesoporous Materials, 119(1-3), 331-337. doi:10.1016/j.micromeso.2008.10.035
Stock, N., & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev, 112(2), 933-969. doi:10.1021/cr200304e
Toyao, T., Styles, M. J., Yago, T., Sadiq, M. M., Riccò, R., Suzuki, K., . . . Falcaro, P. (2017). Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 19(29), 4201-4210. doi:10.1039/c7ce00390k
Ullah, S., Shariff, A. M., Bustam, M. A., Elkhalifah, A. E. I., Gonfa, G., & Kareem, F. A. A. (2016). The Role of Multiwall Carbon Nanotubes in Cu-BTC Metal-Organic Frameworks for CO2
Adsorption. Journal of the Chinese Chemical Society, 63(12), 1022-1032. doi:10.1002/jccs.201600277
Wang, K., Tao, X., Xu, J., & Yin, N. (2016). Novel Chitosan–MOF Composite Adsorbent for the Removal of Heavy Metal Ions. Chemistry Letters, 45(12), 1365-1368. doi:10.1246/cl.160718
Xiang, Z., Peng, X., Cheng, X., Li, X., & Cao, D. (2011). CNT@Cu3(BTC)2 and Metal–Organic Frameworks for Separation of CO2/CH4 Mixture. The Journal of Physical Chemistry C, 115(40), 19864-19871. doi:10.1021/jp206959k
Xiong, Y., Ye, F., Zhang, C., Shen, S., Su, L., & Zhao, S. (2015). Synthesis of magnetic porous γ-Fe2O3/C@HKUST-1 composites for efficient removal of dyes and heavy metal ions from aqueous solution. RSC Advances, 5(7), 5164-5172. doi:10.1039/c4ra12468e
Xue, Y., Zheng, S., Xue, H., & Pang, H. (2019). Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 7(13), 7301-7327. doi:10.1039/c8ta12178h
Yang, S. J., Choi, J. Y., Chae, H. K., Cho, J. H., Nahm, K. S., & Park, C. R. (2009). Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite. Chem. Mater.
Yousefian, M., & Rafiee, Z. (2020). Cu-metal-organic framework supported on chitosan for efficient condensation of aromatic aldehydes and malononitrile. Carbohydr Polym, 228, 115393. doi:10.1016/j.carbpol.2019.115393
Yu, J., Mu, C., Yan, B., Qin, X., Shen, C., Xue, H., & Pang, H. (2017). Nanoparticle/MOF composites: preparations and applications. Materials Horizons, 4(4), 557-569. doi:10.1039/c6mh00586a
Zhang, W., Tan, Y., Gao, Y., Wu, J., Hu, J., Stein, A., & Tang, B. (2016). Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. Journal of Applied Electrochemistry, 46(4), 441-450. doi:10.1007/s10800-016-0921-9
Zhao, R., Ma, T., Zhao, S., Rong, H., Tian, Y., & Zhu, G. (2020). Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chemical Engineering Journal, 382. doi:10.1016/j.cej.2019.122893
Zhu, Q. L., & Xu, Q. (2014). Metal-organic framework composites. Chem Soc Rev, 43(16), 5468-5512. doi:10.1039/c3cs60472a


電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔