|
Abdi, J., Vossoughi, M., Mahmoodi, N. M., & Alemzadeh, I. (2017). Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal, 326, 1145-1158. doi:10.1016/j.cej.2017.06.054 Al-Kutubi, H., Gascon, J., Sudhölter, E. J. R., & Rassaei, L. (2015). Electrosynthesis of Metal-Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2(4), 462-474. doi:10.1002/celc.201402429 Anbia, M., & Hoseini, V. (2012). Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chemical Engineering Journal, 191, 326-330. doi:https://doi.org/10.1016/j.cej.2012.03.025 Azhar, M. R., Abid, H. R., Sun, H., Periasamy, V., Tade, M. O., & Wang, S. (2017). One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. J Colloid Interface Sci, 490, 685-694. doi:10.1016/j.jcis.2016.11.100 Blanita, G., Borodi, G., Lazar, M. D., Biris, A.-R., Barbu-Tudoran, L., Coldea, I., & Lupu, D. (2016). Microwave assisted non-solvothermal synthesis of metal–organic frameworks. RSC Advances, 6(31), 25967-25974. doi:10.1039/c5ra26097c Cao, X., Liu, G., She, Y., Jiang, Z., Jin, F., Jin, M., . . . Wang, J. (2016). Preparation of magnetic metal organic framework composites for the extraction of neonicotinoid insecticides from environmental water samples. RSC Advances, 6(114), 113144-113151. doi:10.1039/c6ra23759b Chen, D., Zhao, J., Zhang, P., & Dai, S. (2019). Mechanochemical synthesis of metal–organic frameworks. Polyhedron, 162, 59-64. doi:10.1016/j.poly.2019.01.024 Chen, L., Chen, H., & Li, Y. (2014). One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chem Commun (Camb), 50(94), 14752-14755. doi:10.1039/c4cc06568a Chen, L., Chen, H., Luque, R., & Li, Y. (2014). Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem. Sci., 5(10), 3708-3714. doi:10.1039/c4sc01847h Chen, X., Ding, N., Zang, H., Yeung, H., Zhao, R. S., Cheng, C., . . . Chan, T. W. (2013). Fe(3)O(4)@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J Chromatogr A, 1304, 241-245. doi:10.1016/j.chroma.2013.06.053 Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., & Williams, I. D. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. AMER ASSOC ADVANCEMENT SCIENCE. DeCoste, J. B., Peterson, G. W., Schindler, B. J., Killops, K. L., Browe, M. A., & Mahle, J. J. (2013). The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 1(38). doi:10.1039/c3ta12497e Ge, L., Wang, L., Rudolph, V., & Zhu, Z. (2013). Hierarchically structured metal–organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture. RSC Advances, 3(47). doi:10.1039/c3ra44250k Gong, X., Zhang, D., Duan, L., Meng, X., & Lin, W. (2019). Methane Storage and Synthesis of Metal-Organic Framework HKUST-1 Prepared With different Solvent. China Petroleum Processing and Petrochemical Technology Gupta, S. S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Adv Colloid Interface Sci, 162(1-2), 39-58. doi:10.1016/j.cis.2010.12.004 Haque, E., Jun, J. W., & Jhung, S. H. (2011). Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater, 185(1), 507-511. doi:10.1016/j.jhazmat.2010.09.035 Hermes, S., Schroter, M. K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., . . . Fischer, R. A. (2005). Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed Engl, 44(38), 6237-6241. doi:10.1002/anie.200462515 Hu, J., Dai, W., & Yan, X. (2014). Comparison study on the adsorption performance of methylene blue and congo red on Cu-BTC. Desalination and Water Treatment, 57(9), 4081-4089. doi:10.1080/19443994.2014.988654 Huang, W., Zhou, X., Xia, Q., Peng, J., Wang, H., & Li, Z. (2014). Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4. Industrial & Engineering Chemistry Research, 53(27), 11176-11184. doi:10.1021/ie501040s Iqbal, N., Wang, X., Yu, J., Jabeen, N., Ullah, H., & Ding, B. (2016). In situ synthesis of carbon nanotube doped metal–organic frameworks for CO2 capture. RSC Advances, 6(6), 4382-4386. doi:10.1039/c5ra25465e Jabbari, V., Veleta, J. M., Zarei-Chaleshtori, M., Gardea-Torresdey, J., & Villagrán, D. (2016). Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chemical Engineering Journal, 304, 774-783. doi:10.1016/j.cej.2016.06.034 Jin, Y., Zhao, C., Sun, Z., Lin, Y., Chen, L., Wang, D., & Shen, C. (2016). Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Advances, 6(36), 30763-30768. doi:10.1039/c6ra01645f Ke, F., Qiu, L.-G., Yuan, Y.-P., Jiang, X., & Zhu, J.-F. (2012). Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell. Journal of Materials Chemistry, 22(19). doi:10.1039/c2jm31167d Ke, F., Yuan, Y.-P., Qiu, L.-G., Shen, Y.-H., Xie, A.-J., Zhu, J.-F., . . . Zhang, L.-D. (2011). Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. Journal of Materials Chemistry, 21(11). doi:10.1039/c0jm01770a Khan, N. A., & Jhung, S.-H. (2009). Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3under Ultrasound. Bulletin of the Korean Chemical Society, 30(12), 2921-2926. doi:10.5012/bkcs.2009.30.12.2921 Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci, 284(1), 14-21. doi:10.1016/j.jcis.2004.09.063 Lee, Y.-R., Kim, J., & Ahn, W.-S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30(9), 1667-1680. doi:10.1007/s11814-013-0140-6 Li, L., Liu, X. L., Geng, H. Y., Hu, B., Song, G. W., & Xu, Z. S. (2013). A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. Journal of Materials Chemistry A, 1(35). doi:10.1039/c3ta11478c Lin, S., Song, Z., Che, G., Ren, A., Li, P., Liu, C., & Zhang, J. (2014). Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous and Mesoporous Materials, 193, 27-34. doi:10.1016/j.micromeso.2014.03.004 Lu, G., Li, S., Guo, Z., Farha, O. K., Hauser, B. G., Qi, X., . . . Huo, F. (2012). Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem, 4(4), 310-316. doi:10.1038/nchem.1272 McKinstry, C., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V., & Sefcik, J. (2017). Scalable continuous production of high quality HKUST-1 via conventional and microwave heating. Chemical Engineering Journal, 326, 570-577. doi:10.1016/j.cej.2017.05.169 Nethaji, S., Sivasamy, A., & Mandal, A. B. (2012). Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Environmental Science and Technology, 10(2), 231-242. doi:10.1007/s13762-012-0112-0 Pichon, A., Lazuen-Garay, A., & James, S. L. (2006). Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 8(3). doi:10.1039/b513750k Qiu, H., Lv, L., Pan, B.-c., Zhang, Q.-j., Zhang, W.-m., & Zhang, Q.-x. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-SCIENCE A, 10(5), 716-724. doi:10.1631/jzus.A0820524 Ren, X., Yang, C., Zhang, L., Li, S., Shi, S., Wang, R., . . . Wang, J. (2019). Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale, 11(24), 11830-11838. doi:10.1039/c9nr03612a Salehi, S., & Anbia, M. (2017). High CO2 Adsorption Capacity and CO2/CH4 Selectivity by Nanocomposites of MOF-199. Energy & Fuels, 31(5), 5376-5384. doi:10.1021/acs.energyfuels.6b03347 Samuel, M. S., Subramaniyan, V., Bhattacharya, J., Parthiban, C., Chand, S., & Singh, N. D. P. (2018). A GO-CS@MOF [Zn(BDC)(DMF)] material for the adsorption of chromium(VI) ions from aqueous solution. Composites Part B: Engineering, 152, 116-125. doi:10.1016/j.compositesb.2018.06.034 Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 Seo, Y.-K., Hundal, G., Jang, I. T., Hwang, Y. K., Jun, C.-H., & Chang, J.-S. (2009). Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous and Mesoporous Materials, 119(1-3), 331-337. doi:10.1016/j.micromeso.2008.10.035 Stock, N., & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev, 112(2), 933-969. doi:10.1021/cr200304e Toyao, T., Styles, M. J., Yago, T., Sadiq, M. M., Riccò, R., Suzuki, K., . . . Falcaro, P. (2017). Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 19(29), 4201-4210. doi:10.1039/c7ce00390k Ullah, S., Shariff, A. M., Bustam, M. A., Elkhalifah, A. E. I., Gonfa, G., & Kareem, F. A. A. (2016). The Role of Multiwall Carbon Nanotubes in Cu-BTC Metal-Organic Frameworks for CO2 Adsorption. Journal of the Chinese Chemical Society, 63(12), 1022-1032. doi:10.1002/jccs.201600277 Wang, K., Tao, X., Xu, J., & Yin, N. (2016). Novel Chitosan–MOF Composite Adsorbent for the Removal of Heavy Metal Ions. Chemistry Letters, 45(12), 1365-1368. doi:10.1246/cl.160718 Xiang, Z., Peng, X., Cheng, X., Li, X., & Cao, D. (2011). CNT@Cu3(BTC)2 and Metal–Organic Frameworks for Separation of CO2/CH4 Mixture. The Journal of Physical Chemistry C, 115(40), 19864-19871. doi:10.1021/jp206959k Xiong, Y., Ye, F., Zhang, C., Shen, S., Su, L., & Zhao, S. (2015). Synthesis of magnetic porous γ-Fe2O3/C@HKUST-1 composites for efficient removal of dyes and heavy metal ions from aqueous solution. RSC Advances, 5(7), 5164-5172. doi:10.1039/c4ra12468e Xue, Y., Zheng, S., Xue, H., & Pang, H. (2019). Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 7(13), 7301-7327. doi:10.1039/c8ta12178h Yang, S. J., Choi, J. Y., Chae, H. K., Cho, J. H., Nahm, K. S., & Park, C. R. (2009). Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite. Chem. Mater. Yousefian, M., & Rafiee, Z. (2020). Cu-metal-organic framework supported on chitosan for efficient condensation of aromatic aldehydes and malononitrile. Carbohydr Polym, 228, 115393. doi:10.1016/j.carbpol.2019.115393 Yu, J., Mu, C., Yan, B., Qin, X., Shen, C., Xue, H., & Pang, H. (2017). Nanoparticle/MOF composites: preparations and applications. Materials Horizons, 4(4), 557-569. doi:10.1039/c6mh00586a Zhang, W., Tan, Y., Gao, Y., Wu, J., Hu, J., Stein, A., & Tang, B. (2016). Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. Journal of Applied Electrochemistry, 46(4), 441-450. doi:10.1007/s10800-016-0921-9 Zhao, R., Ma, T., Zhao, S., Rong, H., Tian, Y., & Zhu, G. (2020). Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chemical Engineering Journal, 382. doi:10.1016/j.cej.2019.122893 Zhu, Q. L., & Xu, Q. (2014). Metal-organic framework composites. Chem Soc Rev, 43(16), 5468-5512. doi:10.1039/c3cs60472a
|