(3.238.7.202) 您好!臺灣時間:2021/03/01 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾佳蓉
研究生(外文):ZHONG, JIA-RONG
論文名稱:整合馬可夫鏈與灰色模式於機車銷售預測
論文名稱(外文):Integrating Markov Chain and Grey Model to Forecast Motorcycles Sales
指導教授:林榮禾林榮禾引用關係
指導教授(外文):LIN, RONG-HO
口試委員:林榮禾張文華莊淳淩
口試委員(外文):LIN, RONG-HOZHANG, WEN-HUAZHUANG, CHUN-LING
口試日期:2020-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:74
中文關鍵詞:機車銷售預測灰色模式馬可夫鏈灰馬可夫鏈
外文關鍵詞:MotorcyclesSales ForecastGrey ModelMarkov ChainGrey Markov Chain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
在臺灣,機車密度為全世界之冠,由於地狹人稠、交通日益繁雜、都會區人口集中等等的因素,機車相較於汽車較道路停車便利、行車時不受壅塞的車流、室內空間暫放等的影響,因此,機車成為臺灣人主要的日常代步工具之一。
而伴隨著環保意識高漲、電動機車技術進步和政府補助措施等等,電動機車的銷售量也逐年攀升,對於原本燃油機車的銷售量進而有所影響,故本研究欲建立銷售量的預測模式,以協助企業在生產製造和擬訂銷售策略時做為參考依據,避免庫存過剩和缺貨的情形發生,獲取更多的利潤。
本研究利用灰色系統理論、灰色馬可夫-銷售量移轉和灰色馬可夫-消費者移轉進行兩者的分析。灰色系統理論分析結果:燃油機車的平均絕對百分比誤差(MAPE)為10.534 %,電動機車的MAPE為87.214 %。灰色馬可夫-銷售量理論分析結果:燃油機車的MAPE為9.847 %,電動機車的MAPE為88.584 %。灰色馬可夫-消費者移轉分析結果:燃油機車的MAPE為7.636 %,電動機車的MAPE為3.357 %。運用本研究所修正的預測結果都有優於前兩者所運用的預測模式,因此,在發展狀況不穩定、變數眾多等等的形況下,可應用馬可夫鏈中消費者移轉的特行進行修正預測,使得到更精準的預測結果。
In Taiwan, the density of motorcycles were the highest in the world. Due to factors that Taiwan was a country with high urban density, the most heavily trafficked road, and the population concentration. Motorcycles were more convenient to park on roads than cars, weren't subject to congestion, and better to storage indoor. Thus, motorcycles had become one of the main daily mobility tools for Taiwanese.
With people’s environmental protection rising, the advancement of electric motorcycles technology and government subsidies, etc., the sales of electric motorcycles had also increased year by year, which has had an impact on the original sales of fuel motorcycles. Therefore, this study wanted to establish a forecasting model of sales volume. To assist enterprises in manufacturing and formulating sales strategies as a reference basis to avoid the situation of excess inventory and out of stock and obtain more profits.
This study uses gray system theory, gray Markov sales theory and gray Markov consumer purchasing behavior for analysis. The gray system theory analysis results that the average absolute percentage error (MAPE) of fuel motorcycles was 10.534%, and the MAPE of electric motorcycles was 87.214%, the grey Markov sales theory analysis results that the MAPE of fuel motorcycles was 9.847%, MAPE of electric motorcycles was 88.584%, and grey Markov consumer purchase behavior analysis results that the MAPE of fuel motorcycles was 7.636%, MAPE of electric motorcycles was 3.357 %. The prediction results modified by this study were superior to the prediction models used by the first two. Therefore, in the case of unstable development and many variables, combining the gray system theory analysis with the behavior of consumer transfer in the Markov chain makes more accurate forecasts.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 x

第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 4
1.3研究流程 4

第二章 文獻探討 6
2.1機車產業 6
2.2銷售預測 15
2.3灰色理論 16
2.4馬可夫鏈 17
2.5灰色馬可夫鏈 18
2.6小結 19

第三章 研究方法 20
3.1研究架構 20
3.2灰色理論 21
3.3馬可夫鏈 23
3.4灰色馬可夫鏈 25
3.5模式評估 27

第四章 研究分析 28
4.1研究資料 28
4.2模式說明 29
4.3灰色系統理論分析 30
4.4灰色馬可夫鏈分析-銷售量移轉 37
4.5灰色馬可夫鏈分析-消費者移轉 47
4.6各模式分析比較 64

第五章 結論與建議 66
5.1結論 66
5.2管理意涵 67
5.3建議 67

參考文獻 68
Abolghasemi, M., Beh, E., Tarr, G., & Gerlach, R. (2020). Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Computers & Industrial Engineering, 142, 106380.
Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140, 378-390.
Arias, M. B., Bae, S. (2016). Electric vehicle charging demand forecasting model based on big data technologies. Applied Energy, 183(1), 327-339.
Ascarza E., Hardie, B. G. S. (2013). A Joint Model of Usage and Churn in Contractual Settings. Marketing Science, 32(4), 533-678.
Berry, L. R., Helman, P., & West, M. (2020). Probabilistic forecasting of heterogeneous consumer transaction–sales time series. International Journal of Forecasting, 36(2), 552-569.
Brouwer, A. S., Kuramochi, T., van den Broek, M., & Faaij, A. (2013). Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems. Applied Energy, 107, 33-51.
Chen, L., Pai, T. Y. (2015). Comparisons of GM(1, 1) and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan. Atmospheric Pollution Research, 6(4), 572-580.
Choi H., Koo, Y. (2019). Do I have to buy it now? A vehicle replacement model considering strategic consumer behavior. Transportation Research Part D: Transport and Environment, 73, 318-337.
Comert, G., Bezuglov, A. (2016). Short-term freeway traffic parameter prediction: Application of grey system theory models. Expert Systems with Applications, 62, 284-292.
Corsten D., Gruen, T. (2003). Desperately seeking shelf availability: An examination of the extent, the causes, and the efforts to address retail out-of-stocks. International Journal of Retail & Distribution Management, 31(12), 605-617.
de Assis Brasil Weber, N., da Rocha, B. P., Schneider, P. S., Daemme L. C., & de Arruda Penteado Neto, R. (2019). Energy and emission impacts of liquid fueled engines compared to electric motors for small size motorcycles based on the Brazilian scenario. Energy, 168, 70-79.
Ding, S., Dang, Y. G., Li, X. M., Wang, J. J., & Zhao, K. (2017). Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariate model. Journal of Cleaner Production, 162, 1527-1538.
Dong, X., Mu, Y., Jia, H., Wu, J., & Yu, X. (2016). Planning of Fast EV Charging Stations on a Round Freeway. Transactions on Sustainable Energy, 7(4), 1452-1461.
He, L.-Y., Pei, L.-L., & Yang, Y.-H. (2020). An optimised grey buffer operator for forecasting the production and sales of new energy vehicles in China.” Science of The Total Environment, 704, 135321.
Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., & Massana, J. (2014). A survey on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings” IEEE Communications Surveys and Tutorials, 16, 1460-1495.
Huang, S. K., Kuo, L., & Chou, K.-L (2018). The impacts of government policies on green utilization diffusion and social benefits – A case study of electric motorcycles in Taiwan. Energy Policy, 119, 473-486.
IEA, (2018). Global EV Outlook 2017: Towards Cross-modal Electrification.” International Energy Agency ( IEA ), Paris, France.
Jia, Z. – Q., Zhou, Z. –F., Zhang, H. – J., Li, B., & Zhang, Y. –X. (2020). Forecast of coal consumption in Gansu Province based on Grey-Markov chain model. Energy, 199, 117444.
Junquera, B., Moreno B., & Álvarez, R. (2016). Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: Technological limitations and vehicle confidence. Technological Forecasting and Social Change, 109, 6-14.
Korolko, N., Sahinoglu, Z., & Nikovski, D. (2016). Modeling and Forecasting Self-Similar Power Load Due to EV Fast Chargers. Transactions on Smart Grid, 7(3), 1620-1629.
Kuramochi, T., Brouwer, A. S., van den Broek, M., & Faaij, A. (2013). Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems. Applied Energy, 107, 33-51.
Li, N., Tsai, J.-P., Tsai, I.-C., He, Q., Chi, S.-Y., Lin, Y.-C., & Fu, T.-M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of the Total Environment, 566–567, 919-928.
Lorek, S., Spangenberg, J. H. (2014). Sustainable consumption within a sustainable economy-beyond green growth and green economies. Journal of Cleaner Production, 63, 33-44.
Majidpour, M., Qiu, C., Chu, P., Gadh, R., & Pota, H. R. (2015). Fast Prediction for Sparse Time Series: Demand Forecast of EV Charging Stations for Cell Phone Applications. Transactions on Industrial Informatics, 11(1), 242-250.
Majidpour, M., Qiu, C., Chu, P., Pota, H. R., & Gadh, R. (2016). Forecasting the EV charging load based on customer profile or station measurement? Applied Energy, 163, 134-141.
Meeran, S., Jahanbin, S., Goodwin, P., & Quariguasi Frota Neto, J. (2017). When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable? European Journal of Operational Research, 258(2), 512-524.
Miguéis, V. L., Loureiro, A. L. D., & da Silva, L. F. M. (2018). Exploring the use of deep neural networks for sales forecasting in fashion retail. Decision Support Systems, 114, 81-93.
Ming, X., Lifeng, W., Bin, L., & Zechen, L. (2020). A novel hybrid multivariate nonlinear grey model for forecasting the traffic-related emissions. Applied Mathematical Modelling, 77(2), 1242-1254.
Moon, H., Park, S.Y., Jeong, C., & Lee, J. (2018). Forecasting electricity demand of electric vehicles by analyzing consumers’ charging patterns. Transportation Research Part D: Transport and Environment, 62, 64-79.
Olivella-Rosell, P., Villafafila-Robles, R. Sumper, A., & Bergas-Jane, J. (2015). Probabilistic agent-based model of electric vehicle charging demand to analyse the impact on distribution networks. Energies, 8, 4160-4187.
Park, S., Gupta, S. (2011). A Regime-Switching Model of Cyclical Category Buying. Marketing Science, 30(3), 469-480.
Peattie, K. (2010). Green consumption: Behavior and norms.” Annual Review of Environment and Resources, 35, 195-228.
Pfeifer, P. E., & Carraway, R. L. (2000). Modeling customer relationships as Markov chains. Journal of Interactive Marketing, 14(2), 43-55.
Plakandaras, V., Papadimitriou, T., & Gogas, P. (2019). Forecasting transportation demand for the U.S. market. Transportation Research Part A: Policy and Practice, 126, 195-214.
Rietmann, N., Hügler, B., & Lieven, T. (2020). Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. Journal of Cleaner Production, 261, 121038.
Romero, J., van der Lans R., & Wierenga, B. (2013). A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement.” Journal of Interactive Marketing, 27(3), 185-208.
Sattinger, M. (2011). The Markov consumption problem.” Journal of Mathematical Economics, 47(4-5), 409-416.
Schweidel, D. A., Bradlow, E. T., & Fader, P. S. (2011). Portfolio Dynamics for Customers Multiservice Provider. Management Science, 57(3), 471-486.
Singh, B. S. M., Rahman, I., Vasant, P. M., Abdullah-Al-Wadud, M., & Adnan, N. (2016). Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews, 58, 1039-1047.
Steinhilber, S., Wells, P., & Thankappan, S. (2013). Socio-technical inertia: Understanding the barriers to electric vehicles. Energy Policy, 60, 531-539.
Sykes, M., Axsen, J. (2017). No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets. Energy Policy, 110, 447-460.
Taoa, H., Fildes, R., & Soopramanien, D. (2019). Forecasting retailer product sales in the presence of structural change. European Journal of Operational Research, 279(2), 459-470.
Tessum, C. W., Hill, J. D., & Marshall, J. D. (2014). Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18490-18495.
Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment, 41, 348-366.
Wei, S., Yanfeng, X. (2017). Research on China's energy supply and demand using an improved Grey-Markov chain model based on wavelet transform. Energy, 118, 969-984.
Wu, L., Gao, X., Xiao, Y., Yang, Y., & Chen, X. (2018). Using a novel multi-variable grey model to forecast the electricity consumption of Shandong province in china. Energy, 157, 327-335.
Yelland, P. M. (2009). Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management. International Journal of Production Economics, 118, 95-103.
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model.” Neurocomputing, 50, 159-175.
Zhang, P., Wu, X., Wang X., & Bi, S. (2015). Short-term load forecasting based on big data technologies. CSEE J Power Energy Syst., 1(3), 59-67.
Zheng, H.-H., Li, Q., & Wang, Z. -X. (2018). Predicting the capital intensity of the new energy industry in China using a new hybrid grey model. Computers & Industrial Engineering, 126, 507-515.
Zhu, L., Song, Q., Sheng, N., & Zhou, X. (2019). Exploring the determinants of consumers’ WTB and WTP for electric motorcycles using CVM method in Macau. Energy Policy, 127, 64-72.
Zhu, S., Lian, X., Liu, H., Hu, J., Wang, Y., & Che, J. (2017). Daily air quality index forecasting with hybrid models: a case in china. Environmental Pollution, 231, 1232-1244.
肖淑紅(2011)。基於灰色馬爾可夫鏈模型的房價預測,中國西部科技,33,7-16。
林淑真(1998)。台灣機車史,臺北市:中華民國機車研究發展安全促進協會。
温坤禮,趙忠賢,張宏志,陳曉瑩,溫惠筑(2013)。灰色理論,臺北市:五南圖書出版。
楊佩珊(2019)。以馬可夫轉換模式探討O2O購物旅程,碩士論文,淡江大學企業管理學系碩士班,臺北。
簡艷群(2010)。灰色-馬爾可夫鏈模型在股市預測中的應用,價值工程,212,2010,255-256。
機車使用狀況調查報告-交通部經濟處,造訪日期:2020年1月21日,取自:https://www.motc.gov.tw/ch/home.jsp?id=56&parentpath=0,6.
工業產品群統計調查,造訪日期:2020年1月21日,取自:https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx.
交通部公路總局統計查詢網,造訪日期:2020年1月21日,取自:https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=defjsp.
交通部統計查詢網,造訪日期:2020年1月21日,取自:http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100#.
電動機車產業網,造訪日期:2020年1月21日,取自:https://www.lev.org.tw/default.asp.
道路交通安全規則,造訪日期:2020年1月21日,取自:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0040013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔