跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳長昇
研究生(外文):CHEN, CHANG-SHENG
論文名稱:真空濺鍍氧化鋁對阻水氣性能之研究
論文名稱(外文):The water permeability of alumina fabricated by magnetron sputtering for water barrier applications
指導教授:楊重光楊重光引用關係
指導教授(外文):YANG, CHUNG-KUAN
口試委員:汪昆立黃聲東孫德崢
口試委員(外文):WANG, KUN-LIHUANG, SHENG-TUNGSUN, DER-JEN
口試日期:2020-03-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:阻水氣膜真空磁控濺鍍單層氧化鋁水氣滲透率
外文關鍵詞:Barrier filmVacuum sputteringAluminaWVTR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技產業進步速度逐漸加快,軟性電子產品已成為未來研發趨勢,對於延緩元件損壞,必須提供阻擋水氣、氧氣之阻隔薄膜,並且需具有良好的光學性能及機械性質。本研究以卷對卷濕式塗佈有機-無機矽氧烷膠料於聚對苯二甲酸乙二酯(PET)基材,並搭配不同乾式製程濺鍍單層氧化鋁,探討其化學組成、表面結構及阻水氣性能。
首先透過溶膠-凝膠法調配有機-無機矽氧烷膠體塗料,以卷對卷濕式塗佈填補原先含有缺陷之PET基材,進行表面修飾,經光學顯微鏡(OM)及原子力顯微鏡(AFM)觀察發現,處理過後缺陷數量與粗糙度均大幅降低。並利用卷對卷反應性濺鍍、連續多腔體式反應濺鍍及射頻式磁控濺鍍,製備單層氧化鋁無機阻隔層,藉由水氣滲透量測儀(WVTR)量測各式濺鍍方法氧化鋁之阻水氣性能。而其與化學組成、表面結構及光學性質之相關性,則經由X光光電子能譜儀(XPS) 、傅里葉轉換紅外光譜儀(FT-IR)、OM、AFM及紫外光-可見光光譜儀(UV-Vis)…等進行分析比較。依據分析檢測結果發現,射頻式磁控濺鍍之氧化鋁薄膜表面缺陷少且較為平坦,阻水效能也較其他兩者優異,水氣滲透率從原本PET基材5.61 g/m2-day降到0.08g/m2-day。

Flexible electronic products have become a future research trend due to the progress of the technology industries are gradually growing. In this study, organic-inorganic hybrid material and different aluminium oxide layers were coated on polyethylene terephthalate (PET) substrate via using roll-to-roll method and sputter deposition technology. The chemical components, surface structure, and water vapor trans-mission rate (WVTR) efficiency of water vapor barrier films will be investigated.
First, the organic-inorganic hybrid coating material was prepared by using sol-gel method for filling the original PET substrate contained defects. The defects and roughness of treated samples were significantly reduced through observation of optical microscope (OM) and atomic force microscope (AFM). The different single layers of aluminium oxide was fabricated by roll-to-roll reactive sputtering, inline sputtering and RF magnetron sputtering. The chemical composition, surface structure and optical properties of different aluminium oxide layers were carried out by through X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR), optical microscope (OM), atomic force microscope (AFM), and UV-Vis spectrometer. According to these analysis results, it is found that the surface defects of aluminium oxide film were significantly reduce and become flat after RF magnetron sputtering treatment. The water vapor permeability of samples were decreased from 5.61 g/m2-day to 0.08g/m2-day.

第一章 緒論 1
1.1 前言 1
1.2 阻水氣膜製程概述 2
第二章 原理概述 4
2.1 阻水氣膜機制 4
2.1.1 薄膜滲透基礎理論 4
2.1.2 均勻無孔膜之滲透模型 6
2.1.3 軟性基材選擇與單層無機阻隔 8
2.1.4 有機無機複合層水氣滲透機制 11
2.2 濺鍍電漿原理 12
2.2.1 濺鍍介紹及電漿效應 12
2.2.2 磁控濺鍍(Magnetron sputtering) 13
2.2.3 反應式直流濺鍍(Reactive DC sputtering) 14
2.2.4 脈衝式直流濺鍍(DC pulsed sputtering) 16
2.2.5 射頻濺鍍(RF sputtering) 17
2.2.6 薄膜成長機制 18
2.3 溶膠-凝膠法論述 21
2.3.1 發展背景 21
2.3.2 溶膠凝膠定義及反應 22
2.3.3 有機無機混成材料 25
2.3.4 應用領域及優點 27
第三章 實驗方法 28
3.1 實驗材料 28
3.2 實驗儀器與設備 29
3.3 實驗規劃 30
3.4 濕式有機無機塗膜 32
3.4.1 有機無機矽氧烷(Ormosils)膠料配製 32
3.4.2 卷對卷濕式塗佈(Roll to Roll Coating) 33
3.5 乾式無機鍍膜 34
3.5.1 卷對卷反應性濺鍍 34
3.5.2 連續多腔體式反應濺鍍 34
3.5.3 射頻磁控濺鍍 35
3.6 檢測分析儀器 36
3.6.1 水氣滲透量測儀(WVTR) 36
3.6.2 原子力顯微鏡(AFM) 38
3.6.3 光學顯微鏡(OM) 39
3.6.4 X光光電子能譜儀(XPS) 40
3.6.5 傅立葉紅外光譜儀(FT-IR) 41
3.6.6 光學膜厚測量系統 41
3.6.7 紫外光-可見光光譜儀(UV-Vis) 41
3.6.8 顯微拉曼光譜儀(Raman) 42
第四章 結果與討論 43
4.1 卷對卷濕式塗佈基材修飾 43
4.1.1 表面形貌與缺陷量測 43
4.1.2 表面微觀結構 45
4.1.3 光學特性 46
4.2 各式真空磁控濺鍍沉積 46
4.2.1 表面形貌與缺陷量測 46
4.2.2 表面微觀結構 48
4.2.3 光學特性 51
4.2.4 阻水氣性能 51
4.2.5 組成成分比例分析 52
4.2.6 表面官能基與親疏水性質 54
4.2.7 殘留應力分析 56
第五章 結論 58
參考文獻 59

[1] T. Trovillion, "GLOBAL TRENDS IN FLEXIBLE PACKAGING," vol. 48, October 2018.
[2] P. e. al., "Flexible organic light-emitting diodes for solid-state lighting," Journal of Photonics for Energy, vol. 5, Jul. 21 2015.
[3] J. S. Lewis and M. S. Weaver, "Thin-Film Permeation-Barrier Technology for Flexible Organic Light-Emitting Devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 1, pp. 45-57, 2004.
[4] M. Hermenau, M. Riede, K. Leo, S. A. Gevorgyan, F. C. Krebs, and K. Norrman, "Water and oxygen induced degradation of small molecule organic solar cells," Solar Energy Materials and Solar Cells, vol. 95, no. 5, pp. 1268-1277, 2011.
[5] S. N. K. Larry C. Olsen, "BARRIER COATINGS FOR CtGSS AND CdTe CELLS " 2005.
[6] G. Dennler et al., "A new encapsulation solution for flexible organic solar cells," Thin Solid Films, vol. 511-512, pp. 349-353, 2006.
[7] D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, and Y.-F. Liu, "Recent progress on thin-film encapsulation technologies for organic electronic devices," Optics Communications, vol. 362, pp. 43-49, 2016.
[8] S.-J. Yun, A. Abidov, S. Kim, J.-S. Choi, B. S. Cho, and S. C. Chung, "Water vapor transmission rate property of SiNx thin films prepared by low temperature (<100 °C) linear plasma enhanced chemical vapor deposition," Vacuum, vol. 148, pp. 33-40, 2018.
[9] J. Fahlteich, W. Schönberger, M. Fahland, and N. Schiller, "Characterization of reactively sputtered permeation barrier materials on polymer substrates," Surface and Coatings Technology, vol. 205, pp. S141-S144, 2011.
[10] J. S. Lee, B. B. Sahu, and J. G. Han, "Effect of the RF power on the characteristic properties of high-performance silicon nitride single-layer permeation barriers," Surface and Coatings Technology, vol. 364, pp. 63-69, 2019.
[11] B. M. H. Ahmet G. Erlat, "Mechanism of Water Vapor Transport through PET/AlOxNy Gas Barrier Films," J. Phys. Chem. B vol. 108, pp. 883-890, 2004.
[12] J. Fahlteich, M. Fahland, W. Schönberger, and N. Schiller, "Permeation barrier properties of thin oxide films on flexible polymer substrates," Thin Solid Films, vol. 517, no. 10, pp. 3075-3080, 2009.
[13] S. Logothetidis, "Flexible organic electronic devices: Materials, process and applications," Materials Science and Engineering: B, vol. 152, no. 1-3, pp. 96-104, 2008.
[14] M. R. I. M. Ibrahim Khan, "Transportation, Processing, and Refining Operations," 2007.
[15] S. K. Alen, S. Nam, and S. A. Dastgheib, "Recent Advances in Graphene Oxide Membranes for Gas Separation Applications," Int J Mol Sci, vol. 20, no. 22, Nov 9 2019.
[16] A. A. Gokhale and I. Lee, "Recent advances in the fabrication of nanostructured barrier films," J Nanosci Nanotechnol, vol. 14, no. 3, pp. 2157-77, Mar 2014.
[17] U. Zhanat and E. Sharipzhan, "Mechanism of Gases Transfer through Polymer Membranes and Membrane Module Calculation Model to Separate Gases," Procedia Technology, vol. 1, pp. 356-361, 2012.
[18] Y. Yampolskii, "Fundamental science of gas and vapour separation in polymeric membranes," in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications, 2011, pp. 22-55.
[19] S. v. Wroblewski, "Ueber die Natur der Absorption der Gase," annalen der physik, vol. 244, no. 9, pp. 29-52, 1879.
[20]M. LOMAX, "PERMEATION OF GASES AND VAPOURS THROUGH POLYMER FILMS AND THIN SHEET," Polymer Testing 1 pp. 105-147, 1980.
[21] R. J. ASHLEY, "Permeabllity and Plastics Packaging " J. Comyn (ed.), Polymer Permeability 1985.
[22] G. L. Graff, R. E. Williford, and P. E. Burrows, "Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation," Journal of Applied Physics, vol. 96, no. 4, pp. 1840-1849, 2004.
[23] Q.-H. Lu and F. Zheng, "Polyimides for Electronic Applications," in Advanced Polyimide Materials, 2018, pp. 195-255.
[24] J. Greener, K. C. Ng, K. M. Vaeth, and T. M. Smith, "Moisture permeability through multilayered barrier films as applied to flexible OLED display," Journal of Applied Polymer Science, vol. 106, no. 5, pp. 3534-3542, 2007.
[25] B. M. H. A.P. Robertsa, "Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films," Journal of Membrane Science vol. 208, pp. 75-88, 2002.
[26] A. S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg-Sapieha, and M. R. Wertheimer, "Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 16, no. 6, pp. 3190-3198, 1998.
[27] P. Pandey, M. Sui, M.-Y. Li, Q. Zhang, E.-S. Kim, and J. Lee, "Shape transformation of self-assembled Au nanoparticles by the systematic control of deposition amount on sapphire (0001)," RSC Advances, vol. 5, no. 81, pp. 66212-66220, 2015.
[28] G. Nisato et al., "Experimental comparison of high-performance water vapor permeation measurement methods," Organic Electronics, vol. 15, no. 12, pp. 3746-3755, 2014.
[29] S. D. D. Arrelaine A. Dameron, "Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition," J. Phys. Chem. C, vol. 112, pp. 4573-4580, 2008.
[30] S. M. John Fahlteich, "The Role of Defects in Single- and Multi- Layer Barriers for Flexible Electronics " pp. 36-39, 2014.
[31] X. He, X. Zhang, X. Wang, and L. Qin, "Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation," Coatings, vol. 7, no. 3, 2017.
[32] J. O. a. G. C. Edgar Alfonso, "Thin Film Growth Through Sputtering Technique and Its Applications " Crystallization – Science and Technology 2012.
[33] W. C. Janglin Chen, Mark Fihn "Transparent Conductors: ITO and ITO Replacements," 2012.
[34] M. H. Ahn, E.-S. Cho, and S. J. Kwon, "Effect of the duty ratio on the indium tin oxide (ITO) film deposited by in-line pulsed DC magnetron sputtering method for resistive touch panel," Applied Surface Science, vol. 258, no. 3, pp. 1242-1248, 2011.
[35] J. Margueritat, "Optical and vibrational properties of new ”Nano-Designed” materials produced by pulsed laser depositio," 16 Jun 2008.
[36] E. Kusano, "Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review," Applied Science and Convergence Technology, vol. 28, no. 6, pp. 179-185, 2019.
[37] D. Wang and G. P. Bierwagen, "Sol–gel coatings on metals for corrosion protection," Progress in Organic Coatings, vol. 64, no. 4, pp. 327-338, 2009.
[38] B. Ben-Nissan, A. H. Choi, and I. Macha, "Advances in Bioglass and Glass Ceramics for Biomedical Applications," in Biomaterials for Implants and Scaffolds(Springer Series in Biomaterials Science and Engineering, 2017, pp. 133-161.
[39] H. D. a. P. HINZ, "HISTORY AND PRINCIPLES OF THE SOL-GEL PROCESS, AND SOME NEW MULTICOMPONENT OXIDE COATINGS " Journal of Non-Crystalline Solids, vol. 48, pp. 11-16, 1982.
[40] L. L. H. a. J. K. WEST, "The Sol-Gel Process," Chem. Rev, , vol. 90, pp. 33-72, 1990.
[41] H. S. a. A. K. H. SCHMIDT, "PRINCIPLES OF HYDROLYSIS AND CONDENSATION REACTION OF ALKOXYSlLANES " Journal of Non-Crystalline Solids vol. 63, pp. 1-11, 1984.
[42] H. SCHMIDT, "NEW TYPE OF NON-CRYSTALLINE SOLIDS BETWEEN INORGANIC AND ORGANIC MATERIALS " Journal of Non-Crystalline Solids, vol. 73, pp. 681-691, 1985.
[43] J. W. a. G. L. Wilkes, "Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach," Chem. Mater. , vol. 8, pp. 1667-1681, 1996.
[44] A. Serra, X. Ramis, and X. Fernández-Francos, "Epoxy Sol-Gel Hybrid Thermosets," Coatings, vol. 6, no. 1, 2016.
[45] C. J. Brinker, "The Physics and Chemistry of Sol-Gel Processing," Sol-Gel Science, 1990.
[46] M. Bizi, "Stability and flocculation of nanosilica by conventional organic polymer," Natural Science, vol. 04, no. 06, pp. 372-385, 2012.
[47] Pier Andrea Serra, "BIOSENSORS FOR HEALTH, ENVIRONMENT AND BIOSECURITY," 2011.
[48] O. D. Libor Mat ejka, "Cage-like structure formation during sol gel polymerization of glycidyloxypropyltrimethoxysilane " Journal of Non-Crystalline Solids vol. 270, pp. 34-47, 2000.
[49] 沈彥廷, "溶膠-凝膠法製備氣體阻隔性光學薄膜," 民國 99 年.
[50] K.-H. Choi et al., "Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells," Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1248-1255, 2009.
[51] Z.-H. Li, E.-S. Cho, and S. J. Kwon, "Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells," Applied Surface Science, vol. 257, no. 22, pp. 9682-9688, 2011.
[52] A. I. Nicolas-Silvente, E. Velasco-Ortega, I. Ortiz-Garcia, L. Monsalve-Guil, J. Gil, and A. Jimenez-Guerra, "Influence of the Titanium Implant Surface Treatment on the Surface Roughness and Chemical Composition," Materials (Basel), vol. 13, no. 2, Jan 9 2020.
[53] S. M. Roger Smart, "X-ray Photoelectron Spectroscopy " 1981.
[54] M. Schmid et al., "Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification," Polymers, vol. 6, no. 11, pp. 2764-2783, 2014.
[55] E. Rebollar et al., "Physicochemical modifications accompanying UV laser induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells," Phys Chem Chem Phys, vol. 16, no. 33, pp. 17551-9, Sep 7 2014.
[56] W. S. Y. J. H. K. S. M. Han, "Multiwavelength Raman characterization of silicon stress near through-silicon vias and its inline monitoring applications," J. Micro/Nanolith. MEMS MOEMS vol. 13, 2014.
[57] N. Naka, S. Kashiwagi, Y. Nagai, and T. Namazu, "Micro-Raman spectroscopic analysis of single crystal silicon microstructures for surface stress mapping," Japanese Journal of Applied Physics, vol. 54, no. 10, 2015.



電子全文 電子全文(網際網路公開日期:20250618)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊